
PROGRAMMERS HANDBOOK

Author: M.Ali Caliskan Revison : 1.0

1 INTRODUCTİON 4

1.1 WHAT IS POWERCAD? 4
1.2 INSTALLİNG POWERCAD 4
1.3 POWERCAD BASİCS 4
1.4 COMPONENT HİERARCHY 5

2 USİNG COMPONENTS 7

2.1 MAKE A CODE-FREE CAD APPLİCATİON. 7
2.2 CANCEL MOUSEACTİONS: TAKE THE CONTROL İN YOUR HAND 7
2.3 THE GLOBAL POWERCAD UNİT : DECİ MİLİMETER (DMM) 7
2.4 PAGE SETUP 8
2.5 GENERAL OPTİONS 9
2.6 THE “LAYER” CONCEPT İN POWERCAD 11

3 BASİC TOOLS 14

3.1 SELECT TOOL 14
3.2 LİNE TOOL 15
3.3 RECTANGLE TOOL 16
3.4 ELLİPSE TOOL 16
3.5 CİRCLE TOOL 17
3.6 ARC TOOL 18
3.7 POLYLİNE TOOL – (ALSO FOR POLYGON AND BEZİER) 19
3.8 POİNT (VERTEX) TOOL 22
3.9 TEXT TOOL 23
3.10 RİCHTEXT TOOL 24
3.11 OLEOBJECT TOOL 25
3.12 MOVE TOOL 26
3.13 DUPLİCATE TOOL 27
3.14 ROTATE TOOL 28
3.15 MİRROR TOOL 29
3.16 RECTANGULAR ARRAY TOOL 30
3.17 POLAR ARRAY TOOL 32

4 BASİC ARRANGEMENTS 34

4.1 GROUPİNG / UNGROUPİNG 34
4.2 ORDERİNG 35
4.3 ALİGNİNG 36

5 MORE ABOUT POWERCAD 38

2

5.1 THE “PEN” AND THE “BRUSH” 38
5.2 THE POİNTS OF THE FİGURES 39
5.3 THE JOİNT LİNES 40
5.4 HANDLİNG BİTMAPS 41
5.5 HANDLİNG METAFİLES 44
5.6 CLİPBOARD İN POWERCAD 44
5.7 “DRAG AND DROP” CASE İN POWERCAD 45
5.8 FİLE I/O İN POWERCAD 45
5.8.1 Using Standart File I/O 46
5.8.2 Using the Custom I/O 46
5.9 PRİNTİNG DRAWİNGS 47
5.10 KEYBOARD COMMANDS 48
5.11 DİMENSİONİNG TOOLS 48

6 POWERCAD INTERFACE 52

6.1 ACCESSİNG LAYERS AND FİGURES 52
6.2 “TFİGURE” INTERFACE 54
6.3 THE DERİVED FİGURE INTERFACES 56
6.3.1 “TLine” Interface 56
6.3.2 “TEllipse” Interface 57
6.3.3 “TCircle” Interface 57
6.3.4 “TArc” Interface 57
6.3.5 “TRectangle” Interface 58
6.3.6 “TVertex” Interface 58
6.3.7 “TPolyLine” Interface 58
6.3.8 “TBMPObject” Interface 60
6.3.9 “TText” Interface 60
6.3.10 “TRichText” Interface 61
6.3.11 “TOLEObject” Interface 61
6.3.12 “TFigureGrp” Interface 62
6.3.13 “TBlock” Interface 62

7 POWERCAD İN BACKGROUND: USİNG DRAWENGİNE DİRECTLY 63

7.1 USİNG THE “INVİSİBLE” WAY 63
7.2 USİNG THE “USER” WAY 65
7.3 TWO EXAMPLES FOR İNTERPRETER METHODS OF DRAWENGİNE 65
7.3.1 The First 65
7.3.2 The Second 66

8 POWERCAD SKİN 68

8.1 THE OBJECT INSPECTOR (PROPERTİES WİNDOW) 68
8.2 TOOLBARS 69
8.3 DİALOGS 69

9 MAKE YOUR OWN TOOLBARS AND DİALOGS 71

3

9.1 MAKİNG CUSTOM TOOLBARS 71
9.2 MAKİNG CUSTOM DİALOGS 77
9.2.1 Designing the Dialog form 77
9.2.2 Designing the dialog component 78

10 USİNG AND MAKİNG BLOCKS 83

10.1 THE BLOCK DİRECTORY 83
10.2 INSERTİNG BLOCKS USİNG THE BLOCK DİALOG 83
10.3 INSERTİNG BLOCKS USİNG TOOLIDX PROPERTY 84
10.4 INSERTİNG BLOCK CALLİNG POWERCAD METHODS 84
10.5 MAKİNG BLOCKS 85

11 MACROS İN POWERCAD 86

11.1 POWERCAD SCRİPT LANGUAGE - PSCL 86
11.2 THE FUNCTİON LİBRARY İN PSCL 87
11.3 RUNNİNG MACROS THROUGH METHOD CALLS 88
11.4 USİNG MACRO DİALOG 89
11.5 EXTENDİNG PSCL – ADD YOUR OWN FUNCTİONS TO THE SCRİPT LANGUAGE 90

12 MAKİNG AND USİNG PLUGİNS 95

12.1 WHAT İS A POWERCAD PLUGİN 95
12.2 MAKİNG USE OF PLUGİNS 95
12.3 DESİGNİNG A POWERCAD PLUGİN 97

13 MORE CUSTOMİZATİON: MAKİNG CUSTOM FİGURES 101

13.1 BASİC CONCEPTS OF CUSTOM FİGURE DEVELOPİNG 101
13.2 THE VİRTUAL METHODS OF TFİGURE 101
13.3 INHERİTİNG CUSTOM FİGURES FROM EXİSTİNG FİGURES 104
13.4 MAKİNG A BRAND NEW FİGURE 108

14 COMPONENT REFERENCE 121

4

1 Introduction
1.1 What Is PowerCAD?

The PowerCAD is designed to provide an editor-like drawing area to
handle drawings. The main idea behind the concept is the need for CAD
modules in the software applications industry. Most engineering, multimedia or
industrial applications need a CAD module embeded with in itself to provide the
user a visual simulation. However, even to provide a satisfaction with a very basic
and simple CAD environment, you still need a huge mathmetical CAD nucleus.
So most applications do not include CAD modules, instead they suggest their
customers to use famous (let’s remember that they are very expensive) CAD
tools in the market.

PowerCAD technelogy is developed to provide the application
programmers a reuasable object library to develop CAD modules for their
applications easily. With the PowerCAD components you can make a 2D CAD
editor with almost no code. However if you take it more professional, by some
more code you can make very flexible customization for your environment.

1.2 Installing PowerCAD
Installing PowerCAD is not different than installing any other component

package. Just open the *.dpk file in Delphi and compile/install it. If you do not
want to have PowerCAD components in a different package, than you should
directly use pcadreg.pas file. This file is in all packages as open source and by
modifying the RegisterComponent calls in the file, you can disable the installing
of a specific component.

1.3 PowerCad Basics

The PowerCad
technelogy can be used in
two main ways. The first
one is the user way. In this
way the user do everything
with mouse actions and
control windows. The
second way is the code
way. In this way the
drawings are made by
making method calls to the

component.
The PowerCAD component creates Layers and store the referances to

them in a list. Each layer is a Tlayer class. The Layers in PowerCad are not
container classes, they only provide the visibility control on the figures related
with them. All drawing commands are handled as related with a Layer. For
instance when you make a Line call to the PowerCAD or when you draw a line in
the editor with mouse, the powercad records the referance of the proper layer in
the figure data. (The proper Layer is the Layer which of you pass the number in the call, or
the active layer in the editor.) The PowerCAD has a layer by default which has a name
‘Base Layer’. The additional layers are created by the user or the code.

Figures

Layers

Optional
Canvas

DrawEngine

PowerCAD

5

The Base Layer has a special behaving. The Layer Number is 0 and
working in the Base Layer means being free of the restrictions of the Layer
concept. You can reach any layer drawing from Base Layer. Working in the Base
Layer simply means working in no layer or working in every layer.

Each drawing item in PowerCad is called Figure. A Figure object is a
primitive of the PowerCAD tool library. A figure is the smallest entity of
PowerCad. The figures are Line, Rectangle, PolyLine, Circle, Ellipse, Arc, Text,
Vertex and Bitmap. The figures are stored all together in one memory database,
even they are related with different layers.

The figures and the Layers together form the PowerCad Object database.
This database is handled by PowerCAD and the drawing of the database is made
by DrawEngine. When making redraw (screen refresh), PowerCAD uses the
DrawEngine to render the object Database to its canvas.

Infact you can also perform the same way that PowerCAD does. You can
create Layers without using PowerCAD and, you can make drawings through
these layers. To render the created database you can directly use the DrawEngine.
You should only make the DrawEngine informed about your Canvas. You can
draw the shapes to any canvas by this way.

1.4 Component Hierarchy

TPCPanel
The PowerCad Panel

This class is an editor
base which has measuring and
zooming capabilities. It is not
useful by itself always so you
shouldn’t use it directly.

TPCDrawBox
The PowerCad Drawbox

This class is inherited
from TPCPanel and is the first step to CAD concept. This class has a drawing
page which the layout and dimensions can be arranged. Some general CAD
concepts like grids, guides, snapping, coordinate system are included and
implemented. The famous PowerCAD property ToolIdx is defined in this class.
Also the major events that PowerCAD triggers are implemented in this class. It is
not useful by itself always so you shouldn’t use it directly.

TPCDrawing
The PowerCAD Drawing

This class is inherited from TPCDrawBox. It includes all CAD calls for
making drawings. The layer concept, blocks, figures, macros, plugins and all CAD
related math concepts are implemented in this class. In fact this is the final step

TPCPanel

TPCDrawBox

TPCDrawing

TPowerCad

6

for the PowerCAD but the mouse actions in this class only causes events to be
triggered. They are not interpreted as drawing actions according to the ToolIdx.
To make drawings in this class you should always use the methods. If you want
to make a custom CAD editor and so if you want to handle mouse actions by
your code then use this class. It is more suitable to customize than the final class.

TPowerCad
The final PowerCad component

This class is inherited from TPCDrawing. It is the final class in the
hierarchy. The only extension it has is the interpretion of the mouse actions. If
the MouseActions property is set to True, the user’s mouse actions is interpreted
as drawing commands according to the ToolIdx in additon to the event
triggering. So with this component the user can easily make CAD actions
(drawing, scaling, rotating, etc.) with the mouse. This component is more usefull
when you use it with the Toolbars and the Control windows(dialogs).

7

2 Using Components

2.1 Make a code-free CAD application.

TPowerCAD component is
designed as to be used with no
coding. To be able to use it, just
put it on the form. Now you have
got a CAD editor. But there is one
case here. This editor should be
invoked about the job it will
handle. So we use the toolbars. We
have got several toolbars but to
have a simple functionality let us
use noe the TPCToolBar. To use a
toolbar on a form first we need a
TPCDock. Put a TPCDock on the
form, then a TPCToolsBars in it.

Now we should set the CadControl property of the TPCToolsBar. Set it to the
TPowerCad on the form.

OK! So simple, but at least it can draw anything. If you want to have
more functionality than you will have to use more toolbars and also for tuning
the PowerCAD editor you will need also some dialogs.

2.2 Cancel MouseActions: Take the control in your hand
The TPowerCad component has got a Boolean property called

MouseActions. By default it is set to True. If you make it false the mouse actions
will not be interpreted as drawing commands. In this case the mouse actions will
be locked so the component will be just a Cad viewer or something else. But
what is more here, you can develop a customized environment which gives
developer defined reactions to the user mouse actions by implementing your own
code in the mouse events.

PowerCad1.MouseActions:= False;

2.3 The Global PowerCad Unit : Deci Milimeter (dmm)
Most Cad Tools in the industry use milimeter as global unit. And also in

these tools you can define decimal measures such as 2.4 mm. In PowerCad we
didn’t want to make a decimal measure unit because of the performance so first
we decided to use an integer global unit. After this it was time to define the type
of the unit, which means what will 1 (the smallest measure value) will express in
PowerCad. If we look at the industry, we see that in technical drawings the
smallest distance used is a half millimeter. So here we decided to use a global unit
under millimeter. In the math books you can not see something as deci
millimeter but for us it is one of the ten of a millimeter in PowerCad. So when
you use 1 in PowerCad you mean 1/10 mm. For expressing a mm you will use
10, and for a cm you will use 100.

8

1 mm = 10 dmm

This is the measurement system in the background. On the ruler pages
you will always see the mm, cm or a higher unit. Also if you want you can see the
ruler as inch values. But never forget, in procedure calls or in measure value
entering you will always use the PowerCad unit, dmm.

2.4 Page Setup

The page properties can be
arranged from the Page
Setup dialog assocaited with
your PowerCad component.

In PowerCad the drawing is made on an
area called page. The page is the printable area of
the drawing canvas and its size, layout, orientation
or back color can be arranged before drawing. For
page options PowerCad has a Page Setup dialog,
however these arrangements are just some property
settings so you can also make them manually by
code.

The page layout provides predefined
industry paper sizes to the page. The page layouts
with their sizes are as follows:

Layout Height(dmm) Width(dmm)
A0 11890 8410
A1 8410 5940
A2 5940 4210
A3 4210 2970
A4 2970 2100
A5 2100 1480
A6 1480 1050
B4 3530 2500
B5 2500 1760
Tabloid 4310 2790
Letter 2790 2150

If you don’t want to use any industry standart but your own page sizes
then you can directly set the WorkHeight and WorkWidth property. In this case the
Page Layout will get automatically plCustom value.

In addition to the page layout we should also speak about the page
orientation. The page can be oriented as landscape or portrait. Above table shows
the sizes when the page is portrait oriented. So the Heights are bigger than the
widths. In case we orient it lanscape, the widths will be bigger than the heights.

9

Portrait Oriented Landscape Oriented

You can arrange page options through Page Setup dialog or through
setting related properties exampled as follows.

PowerCad1.PageLayout := plA4
PowerCad1. PageOrient:= poPortrait;
// You can directly set the Page Sizes if you dont want
// to use layout standarts.
PowerCad1.WorkHeight := 1200;
PowerCad1.WorkWidth := 1000;

2.5 General Options
The environment in PowerCad can be tuned

through the general options. There several options of
PowerCad environment and most of them are
accessable through Options dialog. (Others which
are not in the Options Dialog will be included in the
dialog) . The most basic options are grids, guides,
trace guides, ruler, snapping and scaling.

Grids: In PowerCad, Grids are used to make
drawings in a certain measured environment. Grids
are drawn with their own color, horizontally and
vertically, and provides also snapping. The grid step
value; the distance between to grids is defined as
dmm (1 mm = 10 dmm) by the developer or the
user. The grid color and the grid step can be defined
in the options dialog or from the proper properties.

PowerCad1.Grids := True;
PowerCad1.GridStep := 50;
PowerCad1.GridColor := clSilver;

In the below figure you can see the page with grids and
without grids.

10

Guide Lines: In PowerCad, Guide Lines are used to aid user to organize
objects in a vertical or horizontal line. Guide lines are drawn with their own
color, horizontally and vertically, and provides also snapping. The guides can be
added in runtime by starting a drag on the rulers and dropping it on the page.
You can also drag the guide line to a different location than you have specified at
the beginning. In the design time you can only set the visibility and color of the
guide lines.

PowerCad1.GuidesVisible:= True;
PowerCad1.GruideColor := clGreen;

Trace Guides: In PowerCad, Trace Guides provides user some lines
moving with mouse in different angles. Thus you can draw angled figures more
easily. The trace guides can be in 90,60,45,30 angles. If you don’t want to use the
trace guides the GuideTrace property should be set to gtNone. In the below
figure you can see the mouse moving with the different trace guides.

PowerCad1.TraceGuides:= gtNinty;

gtNinty gtSixty gtFortyFive

Rulers: In PowerCad, Rulers shows the measurements of the page. The x
location of the cursor is highlighted on the horizontl (top) ruler and the y
location of the cursor is highlighted on the vertical (left) ruler. The multiply of
measure unit is arranged according to scale, so we can say that the ruler is always
in autofit mode, so the tick distances is calculated automatically. The ruler sytem
can be metric (mm based) or whitworth (inch based). You can arrange the
visibility and unit system of the ruler through the Options dialog or setting the
related properties.

11

PowerCad1.RulerVisible:= True;
PowerCad1.RulerSystem:= rsMetric;

Snapping : In PowerCad, to define object locations certainly, the mouse
movements can be snapped to some references. These are the grids and the guide
lines. When the mouse goes three pixel closer to the referance, it is snapped to
the referance. PowerCad also provides object snapping, means the mouse is
snapped to the most near point of an object when the SnapToNearPoint is true.
Also in this case PowerCad fires the OnFigureSnap event to provide developer a
custom snapping calculation.

PowerCad1.SnapToGrid:= True;
PowerCad1.SnapToGuides:= True;
PowerCad1.SnapToNearPoint:= True;

Zooming: The view scale property used for zooming. When it is 100 the
drawing is seemed in its actual size and when it is ,for instance, 50 the drawing is
seemed in its half size. The bottom panel zoom buttons, ZoomOut and ZoomIn
increases or decreases the zoom scale by 10. Also you can fit the drawing to the
window area so that all the page can be seen. In this caase the viewscale property
is automatically calculated. And last point in zooming is the Area Zooming.You
can zoom the page as to fit a partial area of the drawing to the window. For
zooming use the zoom buttons () in the bottom panel or
directly set below properties and use methods by code.

PowerCad1.Scale:= 100;
PowerCad1.FitToPage;
PowerCad1.ZoomArea(ZoomRect);

Mapping : Map scale has the same functions as the scale values of the
geographical maps. As declared before, in PowerCad the measurement unit is
dmm. So to draw a 5 cm line you use the value 500. But this value (th 5 cm or
500 dmm) is the value on paper, so the question is to what does it correspond in
real life. The map scale value gives this answer. When it equals to 100, this 5 cm
long line will mean a 5 m long measurement in real life. (eg: it can be the width of
a house room.) This value is used in dimension lines.

PowerCad1.MapScale:= 100;

2.6 The “Layer” Concept in PowerCad
In PowerCad, the user works on the page. The page includes at least on

Layer. To understand the Layer concept of PowerCad, (if you are not familiar
with it from other tools) we can say that in fact a layer is separate part of the
drawing. Think that you have a complex architectural drawing , and you draw the
environmental objects (such as trees, ways) on a different paper, the building on a
different paper and the electrical plan on a different paper. And let us consider
that all these papers are transparent, and when you put them together, you have
the complete drawing together. This separate drawings will provide you more
effective maintainence of your plan. For instance if you change the electrical plan,
you just throw out one paper and draw a new one. But note that each of these
transparent papers has the same sizes. Now let us transfer this case to the
PowerCad and call these transparent papers as “Layer”.

12

PowerCad has a default layer called “Base
Layer”. You can not remove or rename the Base
Layer. The base layer has got an index as 0. By
default, what you draw is in this layer. If you want
you can add new layers, you can delete them or you
can merge them. And you can save a layer to a
separate file.

In most of the method calls, you should
send the layer number. The requested operation is
handled on the given layer. In PowerCad editor all
the operations are handled on the ActiveLayer.
ActiveLayer is defined from the Layer dialog.

If the ActiveLayer is the Base Layer, the operations are handled through
all layers. Because the Base Layer doesn’t got a limitation. If you want on a
limited layer you should create your own and work on it.

When you work on a layer yu can make the others non visible or flue. A
nonvisible layer will not be drawn and a flue layer will be draw as grayed. The
layer dialog provides all layer operations with its grid and menu, but also you can
do all layer operations through method calls and property settings.

A visible layer will have a “V” letter in the second cell, and a flue layer
will have a F on the third cell. For the opposite cases the letter will not be seen.
To make then visible or nonvisibible, and flue or nonflue, just click on these
letters in the layer grid.

On the left figure, you can
see the layer dialog and the
drawn objects. This is a pool
drawing from birdlook. The
base circle and rectangle,
with small rectangles are the
stone part of the pool, and
the bezier curve in the
drawing is the way of the
electric cable.

The pool base and the electric
cable way is drawn on different
layers, so I can flue any of them
to work easily on the other.
Here I can also make invisible
any of the layer.

13

Layer Operations:

By Clicking On the Layer Grid
Set Acive Layer: Click on the layer Row to make it
ActivaLayer.
Show/Hide Layer: Click on the 2nd cell to show/hide
the layer.
Flue/NonFlue Layer: Click on the 3rd cell to make the
layer Flue/NonFlue.
By Clicking On the Layer Menu
New Layer: Creates a new Layer with the given name.
Delete Layer: Deletes the active layer with its
contents.
Merge Visible: Merges the visible layers in the first
visible layer.
Merge All: Merges all layers in the Base Layer.
Flue All InActives: Flues all layers accept the active
layer.
Hide All InActives: Hides all layers accept the active
layer.
Show All: Shows all layers.

You can also handle Layer operations by code.

PowerCad1.ActiveLayer := 0;
PowerCad1.NewLayer('MyLayer');
PowerCad1.DeleteLayer('MyLayer');
PowerCad1.DeleteLayerWithNbr(1);
PowerCad1.ShowLayer(1);
PowerCad1.HideLayer(1);
PowerCad1.FlueLayer(1);
PowerCad1.ExFlueLayer(0);
PowerCad1.ExHideLayer(0);
PowerCad1.ShowAllLayers;
PowerCad1.MergeAllLayers;
PowerCad1.MergeVisibleLayers;
LInfo := PowerCad1.GetLayerInfo(0);

14

3 Basic Tools
Every complex drawing is formed by basic figures. A CAD engine should

provide these basic figures which will help user to make compound ones. In
PowerCAD you have very basic figures all defined natively and can be created in
several ways. Also you will need some operations to apply to the figures to have
variations (such as rotating). PowerCad has also got these operations which are
predifined and can be held in several ways. We call all these figures and
operations PowerCAD basic tools. Later we will see how we can make our own
customized figures or operations, but now let us see what he have got origionally
and how we can use them.

You can use the tools by mouse clicks or method calls. To be able to use
a tool (such as to draw a line) the ToolIdx and CurrentFigure properties should
be properly set. You can set these properties to correct values by your code
manually or by the ToolBars (provided in PowerCAD package) automatically. If
you want to use any PowerCad toolbar (we call them “PowerBar”) then you
should set the CadControl property of the toolbar to the TPowerCAD
component you are using on the form.

Ex : ModifyBar1.CadControl := PowerCad1;

3.1 Select Tool

This is the most basic tool of PowerCad as other Cad engines. With the
select tool you can make figures selected. A figure is drawn with selection points
around when it is selected. And to select a figure means that the following
operations and arrangments will be executed on this selected figure.

Two rectangles on the PowerCAD editor. The
first one is selected and the other is not.

A figure can be selected in several ways.

You can select a fıgure by clicking on it or by drawing a selection
rectangle around it. The ToolIdx should be set as fallows or the the Select Button (

) should be down on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toSelect

A figure is bounded with a temp slight rectangle to be
selected with the select tool. You can also select a figure by
just clicking on it.

15

You can also select a fıgure by using the methods SelectByPoint or
SelectWithArea. The SelectByPoint method slects a figure if the sent point is on
it. The SelectWithArea method selects one or more figures if they are in the sent
rectangle.

PowerCad1.SelectByPoint(...);
PowerCad1.SelectWithArea(...);

You can also directly set the selected property of the figure if you have
got the handle of it.

MyLine.Selected := True;

3.2 Line Tool

With the Line Tool you can create Line. A line has got two points that
should be defined by the user (or the developer).

This is a line on the PowerCad editor.

A line can be created in following ways.

You can create a line by clicking on two different points on the editor.
The ToolIdx should be set as fallows or the the Line Button ()should be down
on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := ‘Tline’;

Creating a line on PowerCad Editor
with mouse clicks.

You can also create a line by using the method Line. The Line method
creates a line and returns its handle. In the later chapters we will se how we can
use these returned handles.

PowerCad1.Line(...);

16

3.3 Rectangle Tool

With the Rectangle Tool you can create Rectangle. A Rectangle has got
two points that should be defined by the user (or the developer).

This is a Rectangle on the PowerCad editor.

A Rectangle can be created in following ways.

You can create a Rectangle by clicking on two different points on the
editor. The ToolIdx should be set as fallows or the the Rectangle Button ()
should be down on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := ‘TRectangle’;

Creating a rectangle on PowerCad Editor with mouse
clicks.

You can also create a Rectangle by using the method Rectangle. The
Rectangle method creates a Rectangle and returns its handle. In the later chapters
we will se how we can use these returned handles.

PowerCad1.Rectangle(...);

3.4 Ellipse Tool
With the Ellipse Tool you can create Ellipse. An Ellipse has got three

points that should be defined by the user (or the developer). The first one is the
center and the other two are the control points that define the angle and radiuses
of the ellipse.

This is an Ellipse on the PowerCad editor.It is selected and
the red cross is the center, the blue points are the control
points.

17

An ellipse can be created in following ways.

You can create an Ellipse by clicking on three different points on the
editor. The ToolIdx should be set as fallows or the the Ellipse Button () should
be down on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toFigure;
PowerCad1.CurrentFigure := ‘TEllipse’;

An Ellipse on the PowerCad editor is created with three mouse
clicks. On the left figure, the user had clicked for the center point
and now will click for the first control point for determining the
angle of the ellipse and its first radius.

On the left figure, the center and the first control point has been
selected. Now second control point will be selected for determining
its second radius.

You can also create an Ellipse by using the method Ellipse or Ellipse3p.
The Ellipse method creates an ellipse with the center point and radiuses provided
in the parameters and returns its handle. The Ellipse3p method creates an ellipse
with the center point and control points provided in the parameters and returns
its handle. In the later chapters we will se how we can use these returned handles.

PowerCad1.Ellipse(...);
PowerCad1.Ellipse3p(...);

3.5 Circle Tool
With the Circle Tool you can create Circle. A Circle has got two points

that should be defined by the user (or the developer). The first one is the center
and the second one is any perimeter point that defines the radius.

This is a Circle on the PowerCad editor. The red cross is the center.

A circle can be created in following ways.

You can create a circle by clicking on two different points on the editor.
The ToolIdx should be set as fallows or the the Circle Button () should be
down on the ToolBar associated with the TPowerCad component.

PowerCad1.ToolIdx := toFigure;
PowerCad1.CurrentFigure := ‘TCircle’;

18

A Circle on the PowerCad editor is created with two mouse
clicks. On the left figure, the user had clicked for the center
point and now will click for a second point which will
determine the radius of the circle.

You can also create a circle by using the method Circle. The Circle
method creates an ellipse with the center point and radius provided in the
parameters and returns its handle. In the later chapters we will se how we can use
these returned handles.

PowerCad1.Circle(...);

3.6 Arc Tool
With the Arc Tool you can create Arc. An Arc has got three points that

should be defined by the user (or the developer). The first one is the center and
the other two defines both the radius and start-end angle of the arc . An arc is
also can be closed in two styles. You can close it by making a pie or with a chord
connecting the ends and you can invert an arc to draw it in an opposite direction.

Three arcs closed in different
styles. The fist one is open,
second is closed as a pie, and the
last one is closed with a chord.

An arc can be created in following ways.

You can create an arc by clicking on three different points on the editor.
The ToolIdx should be set as fallows or the the Arc Button () should be
down on the ToolBar associated with or TPowerCad component. To arrange the
close style and to invert the direction of your arc you should use an TArrangeBar
associated with your PowerCad control.

PowerCad1.ToolIdx := toFigure;
PowerCad1.CurrentFigure := ‘TArc’;

An Arc on the PowerCad editor is created with three mouse
clicks. On the left figure, the user had clicked for the center point
and now will click for the start point, This second click will
also determine the radius of the arc.

19

On the left figure, the user had clicked for the center point and the
start point.Now will click for the end point for determining the
angle of the arc.Note that an arc in PowerCad is built couter-
clockwise.

You can also create an arc by using the method Arc. The Arc method
creates an arc with the center point,radius and start-end points provided in the
parameters and returns its handle. In the later chapters we will see how we can
use these returned handles. The close style of a selected arc can be arranged with
the method ArrangeArcStyleOfSelection method. To invert a selected arc you should
use the InvertArcsOfSelection method.

PowerCad1.Arc(...);
PowerCad1.ArrangeArcStyleOfSelection (...);
PowerCad1.InvertArcsOfSelection (...);

If you have got the handle of an arc you make the arrangements directly
on the arc object.

MyArc.ArrangeStyle(...);
MyArc.Invert(...);

3.7 Polyline Tool – (also for Polygon and Bezier)
With the Polyline Tool you can create polylines or closed polylines

(polygons). The Line between two points of the polyline can be either a straight
line , a curved line (bezier) or an arc in any angle.

In this figure all things you see are created with Polyline Tool. 1. An open polyline 2. A closed
polyline (polygon) 3. An open polyline that all segments are arranged as curve 4. A closed
polyline that all segments are arranged as curve. 5. A closde polyline that the 1st and 3rd

segments are arranged as arc (190 ,90) ,5th and 6th segments are arranged as curve.

A polyline can be created in following ways.

You can create a polyline by clicking on at least two (or more) different
points on the editor. The ToolIdx should be set as fallows or the the Polyline
Button () should be down on the ToolBar associated with or TPowerCad
component.

PowerCad1.ToolIdx := toFigure;
PowerCad1.CurrentFigure := ‘TPolyline’;

20

A Polyline on the PowerCad editor is created with
unlimited mouse clicks.To fnish the building you should
click on the left mouse button..

In PowerCad each click will be interpreted as a new point and to stop the
building you should click on the left mouse button. Between two polyline point
(knot) is a segment. A segment of a polyline can be a straight line, a curve or an
arc. This can be arranged from the right-click menu. When you click on a
segtment of a polyline, the clciked segment is the selected segment of the
polyline, so the starting knot of the segment is the selected knot of the polyline.
If you give any segment or knot command from the right-click menu, the
command is applied to the selected segment/knot. If a segment is arranged as
curve segment then it behaves lieke a bezier spline and as it is known; a bezier
between two end knots requires 2 control points to arrange the curve. When a
curve segment is selected the control points of the curve are also drawn so that
you can arrange it by dragging the control points. An arc segment is an arc
representation between two polyline knots. The degree of the arc is controlled by
the arc center that is represented by a single control point. When the arc segment
is the selected segment, this control point in the arc center is also drawn so that
you can arrange the degree (circle size) of the arc segment by dragging the
control point.

The right-click menu of a polyline
provides the arrangement commands;
the segment submenu includes three
check commands to make the segment
Linear, Curve or Arc. The ‘Curve All’
and ‘Line All’ commands make all the
segments curve or line. The ‘Close
Figure’ command draws the last segment
between the last and the first knot.

Controlling Curve Segments: A Curve segment of a
polyline provides two control points when it is selected.
When you drag these control points the curve is
reshaped according to B-Spline geometry. If two
consecutive segments are both curve segments then the
control points arround the middle point (the second of

the first segment and the first of the
second segment) form a special
behaviour together. Normally two
consecutive bezier curves are handled
together in CAD, so that to save the
continuity of the curve the middle
control points always form a tangent
line. This can be arranged from the ‘Control Line’ submenu of the right-click
menu. If the ‘Tangent Line’ command is checked the control points will form a
tangent line together and when you move onbe of them the other will be also

21

moved to save the tangent line. If the ‘Broken Legs’ command is checked then
the middle control poinst will move independant from each other.

1. The Control Line of the middle
knot is arraned as ‘Tangent Line’.
The control points move together
always forming a tangent line.
2. The Control Line is arranged
as ‘Broken Legs’. The control
points are independent from each
other.

Controlling Arc Segments: When a polyline segment is
arranged as arc segment, the radius of the arc is calculated
according to the angle formed between the previous and
next segment. In the left figure, the pre and next segments
form a 90 angle so that the arc
angle is arranged a 90 . The angle of
the arc can be rearranged by its

center. A single control point is provided as a green
rectangle in arc center to control the radius so the angle
of the arc. This control point can be moved on the mid-
angular axis of the red lines connecting knots and the
center. On the left figure the control point is moved to
the center of the knots so that the arc angle is 180 . When the polyline segment
is an arc, in the Segment submenu of the right-click menu a fourth command is
provided; ‘Invert Arc Segment’. When you click on this segment the arc segment
is inverted, so that a convex to concave or the oppsote conversion is handled.

The concave arc segment
is converted to convex arc
from the ‘Invert Arc
Segment’ command.

Using Polyline methods: You can create a polyline by using the method
PolyLine. Also to be backwards compatible the method Polygon still exists. The
Polyline method creates a polyline with points provided in the parameters and
returns its handle. In the later chapters we will see how we can use these returned
handles. By defining the closed parameter, you can make it either a polyline or a
polygon. To make a polyline completely Bezier, you can use the ConvertToBezier
method and to make any line segment bezier, you should use the ArrangeSegment
method. And in case you want to make a polyline just a polyline with no bezier
points you should use ConvertToPolyline method. Also if you want to set or get the

22

control points of a Segment use the GetControlPointsOfSegment and
SetControlPointsOfSegment methods of Polyline object. The control points can be
handled also through the polyline knot with the method GetControlPointsofKnot and
SetControlPointsOfKnot. The control line of a knot can be arranged with
TangentControlLine or BreakControlLine methods. You can invert an arc segment
with the InvertSegment method. You can get the type of a Segment by
TypeOfSegment method. You van learn if a control line is tangent or not by the
IsKnotTangent method.

PowerCad1.Polyline(...);
PowerCad1.Polygon(...);
// Polygon method is just for backwards compatibility.
// Normally use Polyline method with the
// closed parameter set as True to make a polygon.
PowerCad1.ConvertToBezier(...);
PowerCad1.ConvertToPolyline(...);

If you have got the handle of the polyline then you can use native calls as
fallows.

MyPolyLine.ConvertToBezier(...);
MyPolyLine.ConvertToPolyLine(...);
MyPolyLine.ArrangeSegment(...);
MyPolyLine.ArrangeSelectedSegment(...);
MyPolyLine.GetControlPointsOfSegment(...);
MyPolyLine.SetControlPointsOfSegment (...);
MyPolyLine.GetControlPointsOfKnot(...);
MyPolyLine.SetControlPointsOfKnot (...);
MyPolyLine.TangentConrolLine(...);
MyPolyLine.BreakControlLine(...);
MyPolyLine.TypeOfSegment(...);
MyPolyLine.IsKnotTangent(...);
MyPolyLine.Closed := True;

3.8 Point (Vertex) Tool

With the Point Tool you can create reference points.

This is a point on the PowerCad editor.

A polyline can be created in following ways.

You can create a point by clicking on one location on the editor. The
ToolIdx should be set as fallows or the the Point Button () should be down on
the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toFigure;
PowerCad1.CurrentFigure := ‘TVertex’;

You can also create a point by using the method Vertex. The Vertex
method creates a point and returns its handle. In the later chapters we will se how
we can use these returned handles.

23

PowerCad1.Vertex(...);

3.9 Text Tool
With the Text Tool you can create Text in different fonts. A text has got

a rectangular draw area and a text that should be defined by the user (or the
developer).

This is a text on the PowerCad editor.

A text can be created in following ways.

You can create a text by clicking on one location on the editor. The
ToolIdx should be set as fallows or the the Text Button () should be down on
the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := ‘TText’;

When you click on the editor with text tool a dialog will come up and ask
you for the text.

Creating a text on PowerCad Editor
through the dialog. This dialog also
comes up when you double click on the
created text to edit it.

You can also create a text by using the method TextOut. The Text
method creates a text and returns its handle. In the later chapters we will se how
we can use these returned handles.

PowerCad1.TextOut(...);

The Text Objects are dimensioned with the metric sytem. This means
that you will not use typical windows font dimensioning with pixels. In spite of
this, in PowerCad the height text object is defined and the width of one char is
calculated with a special ratio defined by the user. These properties are all can be
defined through dialogs or method parameters.

Ex: The height of the text is 100 dmm (= 1 cm)
The HWRatio is 0,6
So the width of one character is 60 dmm (= 6 mm)

24

3.10 RichText Tool
With the RichText Tool you can create Windows Rich Text . A rich text

has got a rectangular draw area and a text that is in various font and styles.

This is a rich text on the PowerCad editor.

A rich text can be created in following ways.

You can create a rich text by clicking on two different location on the
editor. This locations will define the rectangukar area of the rich text. The
ToolIdx should be set as fallows or the the RichText Button () should be down
on the ToolBar associated with TPowerCad component.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := ‘TRichText’;

To edit the content of the rich text, you should double click on it to open
the rich text editor.

The rich text editor.

25

3.11 OleObject Tool
With the OleObject Tool you can create Insert Ole Objects to your

drawing . An ole object has got a rectangular draw area .

An ole object on PowerCad Editor. It is a Microsoft Graph.

An ole object can be created in following ways.

You can create an ole object by clicking on two different location on the
editor. This locations will define the rectangular area of the ole object. The
ToolIdx should be set as fallows or the OleObject Button () should be down on
the ToolBar associated with TPowerCad component.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := ‘TOleObject’;

The created ole object will be blank by default. To insert an OLE in it,
you should double click. With an ampty OleObject, double click will result an
InsertObject Dialog, and with a non-empty OleObject, it will result the edito of
the OLE object.

The Insert Object
Dialog of the Ole
Object.

26

Editing ole object on PowerCad Editor. The native applicaiton is launched for editing the object.

3.12 Move Tool

With the Move Tool you can move selected objects in horizontal and
vertical directions. (Note that you can also move a figure by drag and drop with
out the move tool. See ‘Drag and Drop Case in PowerCad’)

An object can be moved in following ways.
You can move an object by clicking on two points on the editor. The

ToolIdx should be set as fallows or the the Move Button () should be down on
the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toOpeartion
PowerCad1.CurrentFigure := ‘TMove’;

A move tool will need the two points to define the new location of the
object(s) by calculating the delta x and delta y value. For example; if the first click
is on the center of the object , then the center of the object will be on the second
click afer the move has realized.

.
Moving a figure on the PowerCad Editor.

27

You can also move an object(s) by using the method MoveSelection. The
MoveSelection method will move the selected object with the given delta x and
delta y value.

PowerCad1.MoveSelection(...);

If you have got the handle of the object(s) that you want to move then
you can use native move call as fallows.

MyLine.Move(...);

3.13 Duplicate Tool

With the Duplicate Tool you can duplicate selected objects on a different
location. (Note that you can also duplicate a figure by copying and pasting with
out the duplicate tool. See ‘Clipboard in PowerCad’)

An object can be duplicated in following ways.

You can duplicate an object by clicking on two points on the editor. The
ToolIdx should be set as fallows or the the Duplicate Button () should be down
on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toOpeartion
PowerCad1.CurrentFigure := ‘TDuplicate’;

A duplicate tool will need the two points to define the new location of the
new object(s) by calculating the delta x and delta y value. For example; if the first
click is on the center of the object , then the center of the new object will be on
the second click afer the duplicate has realized.

.
Duplicating a figure on the PowerCad Editor.

You can also duplicate an object(s) by using the method DuplicateSelection.
The DuplicateSelection method will duplicate the selected object in a defferent
location with the given delta x and delta y value.

PowerCad1.DuplicateSelection(...);

If you have got the handle of the object(s) that you want to duplicate
then you can use native duplicate call as fallows.

MyLine.Duplicate(...);

28

3.14 Rotate Tool

With the Rotate Tool you can rotate selected objects on a different
location.

An object can be rotated in following ways.

You can rotate an object by clicking on three points on the editor. The
ToolIdx should be set as fallows or the the Rotate Button () should be down
on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toOpeartion
PowerCad1.CurrentFigure := ‘TRotate’;

A rotate tool will need the three points to define the location of the new
points of the object(s). The first point is the rotation center, so the selected
object(s) will be rotated around this point. The second and the third point will
form a rotation angle by the lines to the center point.

Rotating objects on PowerCad Editor. The intersecting of the guide lines are the
rotation center (first click). And the other two points for the lines to the rotation center for
creating an angle. Any theree points on the editor will cause a rotation, but to be more close to
the human sense, take the opeartion as selecting an axis on the object (the first two click) and
then selecting the new layout of the pre-selected axis (the last click).

You can also rotate an object(s) by using the method RotateSelection.
The RotateSelection method will rotate the selected object(s) with the given angle
and rotation center point..

PCDrawing1.RotateSelection(...);

If you have got the handle of the object(s) that you want to roate then
you can use native rotate call as fallows.

MyLine.Rotate(...);

29

3.15 Mirror Tool

With the Mirror Tool you can have mirror selected objects by the help of
a mirror axis. When making mirroring you can either save the old object(s) and
create the mirrored one(s) as new, or just relocate the old object(s).

An object can be mirrored in following ways.

You can mirror an object by clicking on two points on the editor. The
ToolIdx should be set as fallows or the the Mirror Button () should be down
on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toOpeartion
PowerCad1.CurrentFigure := ‘TMirror’;

A mirror tool will need the two points to define the location of the new
points of the object(s). These two points together form an axis which represents
the virtual mirror that will relocate the objects. In PowerCad editor if you want
to save the old object(s) click on the shift button when mirroring.

Mirroring objects on PowerCad Editor. In the first figure you see the user defining the
mirro axis. The second figure is the mirrored objects with the duplicate option and the third figure
is with out the duplicate option. The duplicate option is triggered with the shift tool pressed. Note
that your mirror axis is not limited with vertical or horizontal lines. You can select any two points
for defining the mirror axis.

You can also mirror an object(s) by using the method MirrorSelection. The
MirrorSelection method will mirror the selected object(s) with the given mirror axis
and duplicate option.

PowerCad1.MirrorSelection(...);

30

If you have got the handle of the object(s) that you want to mirror then
you can use native mirror call as fallows.

MyLine.Mirror(...);

3.16 Rectangular Array Tool

With the Rectangular Array Tool you can multiply the selected object(s)
in horizontal and vertical directions.

The objects before and after they are arrayed in rectangular form.

An object can be arrayed (in rectangular form) in following ways.

You can array an object by clicking on five points on the editor. The
ToolIdx should be set as fallows or the the Array Rect Button () should be
down on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toOperation
PowerCad1.CurrentFigure := ‘TArrayRect’;

A rect array tool will need the five points to define the number of the
repeating in horizontal and vertical directions and the distances between the
repeatations. The first point is the reference point and the following two points
will define the horizontal and vertical distances. After this three point, the next
two point will define the number of repeatations. (the number of rows and
columns).

31

Arraying an Object
1 . The referance point on the object is
selected with the first click and the
user is defining the x distance with
the second click.
2. The x distance is Ok, now the
user is defining the y distance with the
third click.
3. The distances are Ok. Now the
user is defining the number of
horizontal repeatations by showing
the PowerCad a big distance with a
fourth click. The number is
calcilated by the divisin of the big
distance to the small distance.
4. The horizontal number is OK,
now with the fifth click the user is
defining the number of vertical
repeatations.

You can also array an object(s) in rectangular form by using the method
ArrayRectSelection. The ArrayRectSelection method will array the selected
object(s) with the given distance and repeatations.

PowerCad1.ArrayRectSelection(...);

32

3.17 Polar Array Tool

With the Polar Array Tool you can multiply the selected object(s) in a
circular form.

The objects before and after they are arrayed in polar form.

An object can be arrayed (in polar form) in following ways.

You can array an object by clicking on three points on the editor. The
ToolIdx should be set as fallows or the the Array Polar Button () should be
down on the ToolBar associated with or TPowerCad component.

PowerCad1.ToolIdx := toOpeartion
PowerCad1.CurrentFigure := ‘TarrayRect’;

A Polar Array tool will need the three points to define the location
of the new points of the repeated object(s). The first point is the
rotation center, so the selected object(s) will be repeated around this
point. The second and the third point will form a repeat rotation
angle by the lines to the center point.

33

You can also array an object(s) in polar form by using the method
ArrayPolartSelection. The ArrayPolarSelection method will repeat the selected
object(s) with the given angle and rotation center point..

PowerCad1.ArrayRectSelection(...);

34

4 Basic Arrangements
Arrangements are not tools, this means they do not need user specified

points on the editor. You just select the object(s) and apply the arrangements. All
arrangments are made by method calls and through a button click on the Arrange
Toolbar.

4.1 Grouping / Ungrouping
Grouping objects make them behave tohether in the environment. When

you select a gruop, all of the objects in the group is selected together.

On the left, the first figure shows
the objects before they are grouped
and the second one shows them after
gruping. An ungroping will breake
the group into the previous objects
again.

To group/ungroup the selected objects click on the Group Button ()
/UnGroup Button () on the Arrange toolbar assocaited with your TPowerCad
or use the methods below.

PowerCad1.GroupSelection(...);
PowerCad1.UnGroupSelection(...);

You can also, group figures which are created in different layers.
For the figures, being in different layers is not an objection for being a
group.

Combined Grouping

If you combine a group, the group will be
painted in ALTERNATIVE style. So
you can have holes in figures. To have
combined group first group the filled
objects and then from the popup menu
make the group combined.

Nested Grouping

If you regroup any grouped object with other groups or indivuduals you
make nested grouping. In this case when you ungroup, the final group will not
break into all indivuduals, but the groups in the group will be saved again as a
group.

35

Example:
First we group the two
red objects. Then with
this group and aothr
two yellow objects we
make another
grouping. This is
nested grouping.

When we ungrop the group in figure 4 above, we will have
the result on the left.

4.2 Ordering
Ordering objects provides arranging the order of them in z direction. The

one which is most front is drawn latest, so it is not covered by any other objects.
The one which is most back is drawn first so, it is possible for other objects to
cover it.

Z-Order : Z-Order is the drawn order of the objects. On the left blue
rectangle is drawn before the grennone is drawn. So the green one is more
closer to the fron in z-order.

There are for arrangements for ordering the objects. 1.Bringing to Front
2. Sending to Back 3. Bringing Forward 4. Sending Backwards

Bringing to Front, will bring the object to the most front, and sending it
back will send it to the most back. Bringing forward will bring the object one step
to the front and sending backwards will send it one step to back.

1 2

3 4

5

36

On the left figure the order of the objects is in
their initial state The red object is selected
and its order will be arranged as an
example. If you apply each order arrangment
below seperately from each other, you will
have the results below the commands.

SendToBack BringToFront SendBackwards BringForward

To order the selected objects click on the related Order Button ()
on the Arrange toolbar assocaited with your TPowerCad or use the method
below.

PowerCad1.OrderSelection(...);

4.3 Aligning
Aligning objects provides relocating them as their lefts, rights, tops,

bottoms or their centers stand in one horizontal or vertical line. The firstly
selected object is always referance for the aligning.

Horizontal Aligning
In the left figure the objects before they are aligned.
In the below figures the objects after they are aligned. 1.Aligning
Tops 2.Aligning Bottoms 3.Aligning horizontal centers

37

Vertical Aligning
In the left figure the objects before they are aligned.
In the below figures the objects after they are aligned.
1.Aligning Lefts 2. Aligning Rights 3.Aligning vertical centers

Distrubuting Centers:
The Align Arrangement also includes distrubuting. With
horizontal distrubuting (above), you can arrange the
horizontal inter distances of the objects evenly and you can do
the same for vertical distances with vertical distrubiting (left).

To align the selected objects click on the related Align Button
() on the Arrange toolbar assocaited with your TPowerCad
or use the method below.

PowerCad1.AlignSelection(...);

38

5 More about PowerCad
5.1 The “Pen” and the “Brush”

To draw something on a paper, you need a pen and to paint your objects
you need a brush. This is not so different on digital drawings. PowerCad drawing
system is based on Windows GDI (Graphical Device Interface) and before the
3rd release we do not want to go beyond the Windows GDI. So for now we are
limited with windows’ pen and brush.

In Windows GDI, a pen is a virtual actual record for a device context
(screen, printer etc.) which stores the drawing style, the drawing width and the
drawing color. So windows uses this record when making any drawing on the
device context. And just like pen, a brush is also a virtual actual record for a
device context but this time it stores the paint style and paint color of the
drawings. So in one sentence the GDI draws the rectangle with the actual Pen
and fills it with the actual Brush.

In PowerCad each figure has a pen and brush settings for itself. These
settings are gathered from environmental default settings when first creating and
then modified through the related dialogs. Also when creating figures through
method calls you should know that some of the method parameters are for these
pen and/or brush settings.

The Pen and Brush Settings
can be modified through the
Modify window (left)
associated with your control.
The Pen settings include the
style of the pen, the width of
the pen, the row style of the
pen (only in linear figures),
and the color of the pen. The
Brush settings include the
style of the brush and the
color of the brush. The pen
and brush settings can also
be modified through the
modify toolbar (bottom)
associated with you control.

39

Pen Styles Row Styles of Pen Brush Styles

When creating figures through the method calls, the Pen and Brush styles
are defined in the method parameters.

PowerCad1.Rectangle (*,*,*,*,*,w,s,c,brs,brc,…);
PowerCad1.Line(*,*,*,*,*,w,s,c,row,…);
// w: pen width, s: pen style, c: pen color
// brs: brush style, brc: brush color
// row: row style

And to modify the pen and brush styles of the created figures through the
method calls you should use the ModifySelection method.

PowerCad1.ModifySelection(…)

Also, if you have got the figure handles you can modify them directly
through native calls.

MyLine.Width := 1;
MyLine.Color := clRed;
MyLine.Style := 2; // or MyLine.Style := ord(psDot);
MyLine.RowStyle := 0; // No rowed end

5.2 The Points of the Figures
When a figure is drawn on th PowerCad editor, you can see some points

drawn with the figure when it is selected or not. These points help the user for
modificating the figure and to guide user to show give some information about
itself. To modify the figures we use the Modification Points and to be informed
about them we look at the Guide Points.

The modification points are drawn when the figure is selected and by
dragging and dropping this points the figure shape is modified or it is rescaled.
The guide points are always drawn if the DrawGuidePoints of the figure is not
set to false. These points give us location information such as the center of a
circle or the focus of an ellipse. Note that the guide points or the modification
points are not drawn when making printing. (They are not printed)

40

The blue rectangular points are the modification points
of the circle. By dragging and dropping these points, the
radius is redefined. And the red cross point is the guide
point of the circle which shows the center of the circle.

Some figures in PowerCad such as polyline and ellipse , have got some
points also for modification that are not located on the figure. These are the
control points and in PowerCad, they also called modification points since they
are used to reshape the figure.

5.3 The Joint Lines
In some drawings, some lines are used as bounds among two other

fıgures. So when any of these fıgures move the end point of the line should also
move to the same location of the figure. We call these lines Joint Lines.

In PowerCad a Line figure or a PolyLine figure can act as a joint line.
You can join one of or both of the ends of a line/polyline to other figures. When
a line end is joined to any figure a small red cross will be drawn in joined end of
the line. (Note that these crosses are guide points of the line)

As you can see on the left
figures, the joint line reacts to the
figure movements. The line ends
insist on saving their locations
relative to the figures. Note that
the joint ends are marked with
the crosses.

To join a line/polyline end on PowerCad editor, drag the end of the line
when it is selected, with your mouse (by also pressing shift and ctrl keys together),
and drop it on the selection area of the figure you want to joint to. Here two points
to be aware of:

1. The selection area of the figure is the area on which you press to select.
For instance if you drop the line end inside a non-filled rectangle, it
will not be joined. So to make easy joins first fill the figure or drop
the line end on the edge of the figures.

2. Be free to drop it on any location of the figure. Because after you
make the join, you can easily change the location of the join end. For
instance, consider you have dropped the line end on the center of a
circle when joining, and then you can redrag the join end to the edge
(or even outside of it) of the circle. It will always remain joined.

41

To unjoin a line on the PowerCad editor you should use the line popup
menu.

To control line joinings through the method calls please use the code
below.

PowerCad1.BoundLineToFigures(...);
PowerCad1.BoundLinePoint(...);
PowerCad1.UnBoundLine;

If you have got the handle of the object(s) that you want to join then you
can use native method calls as fallows.

MyLine.SetJFigure1(...);
MyLine.SetJFigure2(...);
MyLine.UnBound;

5.4 Handling Bitmaps
In PowerCad, bitmaps can be inserted from the disk, and they can be

manipulated on the powercad editor. A bitmap data is normally hasn’t got metric
dimension info as all other picture formats. Almost every picture format is
dimensioned with its pixel counts in width and height. So the applications which
uses metric style of dimensioning, redimension these pictures according to an
optimal resolution.

So now, the question is “What does resolution for a picture mean?”. The
resolution of a picture is the density of the pixels which defines how many of
them will be drawn in one inch. Normally if you decrease the resolution the
picture size in metrics will increase but the quality of it will decrease. And when
you increase the resolution (so you will put more pixels to 1 inch size), your
picture quality will increase when your picture dimensions decrease. But
increasing the resolution will not always mean high quality , because after an
optimal point the pixels in one inch will exceed the display adapter or printer
possibilities and they will be drawn on eachother. So when we speak about the
resolution we use the word optimal.

In PowerCad the optimal resolution for the bitmaps is 180 dpi. That is; if
there are 1800 pixels in the width of the bitmap data, the width of the bitmap in
PowerCad will be 10 inch (= 25,4 cm = 2540 dmm) by default. But after
inserting the bitmap you can manage the sizes (width and height) by scaling it. In
this case the resolution will decrease or increase of course.

To insert bitmap to the PowerCad editor you will just click on one point
to show the topleft location of the picture. The ToolIdx should be set as fallows.

PowerCad1.ToolIdx := toFigure;
PowerCad1.CurrentFigure := ‘TBmpObject’;

You can also insert a bitmap by using the method InsertBitmap. The
InsertBitmap method creates a bitmap figure and returns its handle.

PowerCad1.InsertBitmap(...);

42

You can do several operations on a bitmap inserted to the PowerCad
editor like scaling, rotating, flipping and transparenting.

Scaling Bitmaps : Scaling bitmaps on the powercad editor is not so
different than scaling any object. Only you should know that the resolution (so
the quality) changes when you resize the bitmaps.

Rotating Bitmaps : Rotating bitmaps on the powercad editor is not so
different than rotating any object. But to handle this operation PowerCad does a
hard work in the background. To rotate a bitmap, powerdraw creates a new
bitmap which stores the new locations of the scanlines (horizontal pixel set).

The bitmap with its rotated copy.

Flipping Bitmaps: Flipping is a specific arrangment for bitmaps. You
can flip the bitmaps in horizontal or vertical direction. In case of flipping
PowerCad inverts the location of the bitmap scanlines. So the one at the
beginning goes to the end.

To flip the selected bitmap(s) click one of the the Flip Buttons () on
the Arrange toolbar assocaited with your TPowerCad or use the method below.

PowerCad1.FlipImagesOfSelection(...);

The above pictures show
the horizontal flipping and
the below pictures show the
vertical flipping.

Transparent Bitmaps: In fact for the bitmaps, there is nothing for the
transparency in the file format. A gif can be transparent or not, this property of it
is stored in its file format. However, for bitmaps, the transparency is defined on
the application level by the users or the applications itself. To draw a bitmap as
transparent on a canvas in windows means to redraw the background pixel
instead of the bitmap pixel if it has a specific color (or the transparent color). So

43

in Windows GDI to draw a bitmap transparent we should tell windows about the
transparent color. In PowerCad this color is defined by the code itself by looking
at the topleft pixel color.

Transparenting
bitmaps.

To make the selected bitmap(s) transparent use the method below.

PowerCad1.SetTransparentOfSelection (...);

Clipping Bitmaps: The bitmaps on the PowerCad editor can be clipped
in a different close figure. To make this, the ClipSelBitmapToSelFigure method
should be called when the bitmap and the clipping figure are selected together.

PowerCad1.ClipSelBitmapToSelFigure (...);

A bitmap object cliped in a circle.

Selection of a Clipped
Bitmap

The clipped bitmap, is selected
as group by bitmap. This
means the clip figure and the
bitmap is selected together.
More, you can select the
bitmap, or you can select the
clip figure alone from the pop
up menu.

Storing Bitmaps: When a bitmap is inserted to PowerCad and the
drawing saved to a file, the bitmap data is saved to the drawing file also. So when
you make delivery of PowerCad drawings you shouldn’t also deliver the bmp files
with the drawing.

44

5.5 Handling Metafiles
In PowerCad, metafiles can be inserted or imported from the disk. If you

insert a Windows Metafile (WMF) then a TWMFObject will be created and the
inserted WMF will be behaved as it is a picture. The inserted WMF files are
drawn to active device contexts by using Windows GDI directly. However, when
you import a WMF it will be converted to PowerCad objects such as lines,
rectangles, arcs etc. In this case the WMF file is analyzed and a convertion is
handled. If you should edit the WMF then import it else it is always better to
insert it as a picture.

To insert a metafile to the PowerCad editor you will just click on one
point to show the topleft location of the picture. The ToolIdx should be set as
fallows.

PowerCad1.ToolIdx := toFigure;
PowerCad1.CurrentFigure := ‘TWmfObject’;

You can also insert a bitmap by using the method InsertWmf. The
InsertWmf method creates a WMF figure and returns its handle.

PowerCad1.InsertWmf(...);

An inserted metafile can be rotated or mirrored only if the operating
systen is NT based.

To import a metafile, you should use the ImportWMF method. This
method analyzes the metafile and converts it to editable PowerCad objects.

PowerCad1.ImportWmf(...);

5.6 Clipboard in PowerCad
When windows was first introduced, we all liked its Ctrl-C/Ctrl-V feature.

Copying and pasting items is a standart in Windows applications, so any visual
tool, should provide a copy/paste feature.

In PowerCad you can copy, cut and paste objects on the editor. These are
just a few button clicks or method calls. But what is more important to declare
here is the background process held in PowerCad trans clipboard.

Clipboard is an application common memory area managed by the
Windows, to store temporary data which will be used later or exported to another
application. When you select and copy a text from NotePad and then paste it to
WordPad, what is done is this; Notepad writes the data(text) to the clipboard and
Wordpad reads the data(text) from the clipboard.

When an aplication copies its data to the ClipBoard it marks this data
with a format indicator, so a different application that will share this data in the
clipboard, should regard to the format of the data. Windows Clipboard API
provides a standart interface to the applications, so that most aplications share
their data by sending clipboard data in standart format. But since the limitations
of the standart formats and the natural conversion rounding errors, an
application sometimes sends the data to the clipboard with its own format in
addition to a standart format.

45

PowerCad sends the figure data to the Clipboard in two formats: When
the CopySelection and CutSelection methods are called, the figure data is written to
the clipboard as PowerCad Streamed figure format and Windows Metafile
Format. So the data in the Clipboard can be used by either PowerCad with no
destruction in the numbers or by any application which can communicate with
WMF.

When the PasteFromClipboard method is called, PowerCad checks
Clipboard if any data is stored with its own format. If any PowerCad Data is
found, PowerCad retreives this data and creates the figures stored in. And if
PowerCad can not find any data in its own formta, then it looks if any WMF data
exists. If WMF data is found then PowerCad creates figures from this WMF. So
in anydrawing application, you can copy the drawing items to the Clipboard and
paste ot to PowerCad drawing.

5.7 “Drag and Drop” Case in PowerCad
Famous Windows feature “Dragging and dropping” is active in

PowerCad when you make locating. Locating in PowerCad is to change the
location of a figure point, or the the figure itself. By dragging and dropping you
can move the figure to a new location, or you can move the modification points
of the figure, thus you make scaling or some other modifications on the figure.

5.8 File I/O in PowerCad

File formats of the applications are treated as they are secret. Most
applications do not document their file formats to save their know-how in their
organizations. The user created files of these applications are not accassable from
other applications unless the file format is cracked.

PowerCad is not an application, it is a programming tool which
contributes the creating of several different applications. So the problem here is
about the file format. What will happen when we introduce a strict file format
which is well documented? Yes, as you can guess each application created with
PowerCad will have the same file format which is open to eachother and to other
industry crackers. So PowerCad should provide something different and more
than the file format.

Normally PowerCad has got two types of file formats. The first is the
textual file format and the second is the binary file format. If you want to use
them in standart ways you just use the standart IO method of PowerCad to save
and load drawings.

If you do not want to use the standart IO, that is; you want to save
drawings as not to be accessable from any other PowerCad application, you
should customize the IO interface of PowerCad.

46

Below, you will see using the standart file IO and the custom file IO.

5.8.1 Using Standart File I/O

PowerCad file has got a binary format. The drawing is organized in
sections, and eachsection is written to the file seperately. The file format provides
an xml like communication, so that even the format changes, the eralier
applications can load later files.

To save a drawing to a file and to load a drawing from the file use the
methods below.

PowerCad1.SaveToFile (fileName);
PowerCad1.LoadFromFile (fileName);

 The SaveToFile and LoadFromFile methods has got only parameter. The
filename parameter specifes the path where the drawing will be saved to or load
from.

PowerCad Binary File Structure

[FileStart][FileStart][FileStart][FileStart]
Signature Signature Signature Signature –––– 8 Bytes 8 Bytes 8 Bytes 8 Bytes –––– (123,125,212,234,76,65,169,214) (123,125,212,234,76,65,169,214) (123,125,212,234,76,65,169,214) (123,125,212,234,76,65,169,214)
Version Version Version Version –––– 4 Bytes 4 Bytes 4 Bytes 4 Bytes
Section Count Section Count Section Count Section Count –––– 4 Bytes 4 Bytes 4 Bytes 4 Bytes
[Sections][Sections][Sections][Sections]
Section Size Section Size Section Size Section Size –––– 4 Bytes 4 Bytes 4 Bytes 4 Bytes
Section Name Section Name Section Name Section Name –––– Up to Null Char Up to Null Char Up to Null Char Up to Null Char
Section Data Section Data Section Data Section Data –––– Up to Section Si Up to Section Si Up to Section Si Up to Section Sizezezeze
[File End][File End][File End][File End]

Normally 4 sections are stored at the moment: Document Properties, Layers, Normally 4 sections are stored at the moment: Document Properties, Layers, Normally 4 sections are stored at the moment: Document Properties, Layers, Normally 4 sections are stored at the moment: Document Properties, Layers,
Figures,Line JoinsFigures,Line JoinsFigures,Line JoinsFigures,Line Joins

A section in PowerCad binary file is structured as fields and values. So
version changes will not cause consistency problems. An earlier version is able to
open a later version file. Just the earlier application will not show the newly added
fileds. Also when new sections are added to the structure, again the new files will
be opened in the earlier applications, just the new sections will be ignored.

5.8.2 Using the Custom I/O

The Custom I/O is designed for providing an application specific file
format. For this you will get the data of the current drawing as text source or
binary stream, then you will save this data to your file in the way you want.

More this custom interface provides you, to save the drawings with in a
fiel you save something more about your application, in cases cad features are
just a module of your application.

When uyu can get the data of the drawing as a whole stream, you can also
get more specific data of the layers and figures separately. So you can save the
data to the files in more customized structures.

For these purposes PowerCad has fallowing methods.

PowerCad1.SaveToStream (...);
PowerCad1.LoadFromStream(...);

47

The first method above, SaveToStream will save all the file data of the
drawing as binary to the provided stream. To reload your file, call the
LoadFromStream method with the stream provided by previous method.

In the following code , the drawing is saved to a bigger stream which
includes various data. And also it is loaded from the stream again.

Procedure ApplicationSave;
Var
 MyStream: TfileStream;
Begin
 MyStream := TFileStream.Create(‘c:\file.ext’,fmCreate);
 OtherData1.SaveToStream(MyStream);
 PowerCad1.SaveToStream(MyStream);
 OtherData2.SaveToStream(MyStream);
 MyStream.Free;
End

Procedure ApplicationLoad;
Var
 MyStream: TfileStream;
Begin
 MyStream := TFileStream.Create(‘c:\file.ext’, fmOpenRead);
 OtherData1.LoadFromStream(MyStream);
 PowerCad1.LoadFromStream (MyStream);
 OtherData2.LoadFromStream (MyStream);
 MyStream.Free;
End

5.9 Printing Drawings
In PowerCad, the standart Print method, draws all objects directly to the

printer canvas (device context). This style of printing is the most performant way
and it doesn’t use too much resources from the memory. To use this standart
printing use the method below.

PowerCad1.Print (...);

The only problem with direct canvas printing that occures in some old
printers, is the transparency fail. Some printer drivers can not handle raster
operations. So if you have got a transparent bitmap in your drawing, PowerCad
uses a temp memory bitmap to make the raster operations. And the rastered
bitmap is then copied to the printer canvas. So in these cases you can feel a
decrease in the performance.

Tiled Printing

If your printer page size is smaller than your drawing size, than you can
print your drawing to more than one pages. This is called Tiled Printing. For tile
printing you should give the sizes of the printer page, the drawing will be printed
with margins on the pages. For tiled printing use the method below.

48

PowerCad1.PrintByTiling (...);

5.10 Keyboard Commands
If PowerCad control in your form has got the focus, then the keyboard

strokes is trapped by Powercad. These key strokes are first checked if they
mathch the shortcut of a PowerCad Keyboard Command. The Powercad
keyboard commands can only be active if the KeyCommands property is true.

PowerCad1.KeyCommands := True;

If the key stroke is any of the key commands, PowerCad exectes the
matching command. The list of current keyboard commands are as below, in the
later versions the list will be extended.

Down Arrow : Moves the selection 0,1 mm downside.
Up Arrow : Moves the selection 0,1 mm upside.
Left Arrow : Moves the selection 0,1 mm leftside.
Right Arrow : Moves the selection 0,1 mm rightside.

Ctrl+Down Arrow : Moves the selection 2 mm downside.
Ctrl+Up Arrow : Moves the selection 2 mm upside.
Ctrl+Left Arrow : Moves the selection 2 mm leftside.
Ctrl+Right Arrow : Moves the selection 2 mm rightside.

DEL : Deletes the selected figures.

Ctrl+A : Selects all figures.
Ctrl+C : Copies the selected figures to clipboard.
Ctrl+X : Cuts the selected figures to clipboard.
Ctrl+V : Pastes the figures from clipboard.
Ctrl+Z : Undoes the last action.
Ctrl+Y : Redoes the last undone action.
Ctrl+G : Groups the selected figures.
Ctrl+Shift+G : UnGroups the selected groups.
Ctrl+F : Brings the selected figures to front.
Ctrl+B : Sends the selected figures to back.
Ctrl+M : Makes the selected figures a block.
Ctrl+N : Prepares the control for a new drawing.
Ctrl+O : Prompts an Open Dialog for loading a drawing.
Ctrl+S : Prompts an Save Dialog for saving the drawing.

Ctrl+P : Prompts an
Print Dialog for printing the drawing.

5.11 Dimensioning Tools
You can create dimension lines

to show the size of figures and
distances. The dimension lines can
either show the dimension of pointed
distance or any text entered by the user.
In the current version of PowerCad,

49

there are 3 types of dimension lines: Horizontal Dimension Line, Vertical
Dimenison Line, Aligned Dimension Line.

A Diemension Line is formed by three elements as shown in the figure.
The first is the mainline, secondly the bound lines and last the Label.

All dimension lines are controlled through their properties, these
properties can be arranged from the Object Inspector . Also the right-click menu
provides access to most of the dimension line properties.

AutoLabel: This is a Boolean property. When
it is set to true, the distance that the dimension line is
indicating is measured automatically and it is written in
the label of the dimension after the distance is
multiplied with the MapScale property of the drawing.
If the AutoLabel property is false, then the text in the
Label property of the Dimenison Line will be written
in the label of the diemension Line.

Label: This property is a string property ;
storing the text that will be drawen in the label of the
dimension line. The text in this property will be
written only when the AutoLabel property is set to
false.

EndType: The value of this property defines the connectings of the ends
of the main line to the Bound Lines. This property can be ClearEnd, RowEnd,
DotEnd, NickEnd.

EndType = ClearEnd EndType = RowEnd EndType = DotEnd EndType = NickEnd

TextPosition: The value of this property defines the location of the
label according to the main line. It can be OnLine, AboveLine or Below Line.

TextPosition = OnLine TextPosition = AboveLine TextPosition = BelowLine

AutoLabel = True

AutoLabel = False

50

LabelPrefix: This property is a text value. Use
this property to add strict text before the size in the
label. This is active when AutoLabel is True.

LabelSuffix: This property is a text value. Use
this property to add strict text after the size in the
label. This is active when AutoLabel is True.

Labeling: The value this property shows the
style of the main line with the label together. Normally
each type Dimension Line provides different labeling styles, so we will see the
details of this property for each type of dimension lines.

Horizontal Dimension Lines

Shows the horizontal distance between two points. The end of the
bounding points may be in different y locations. The distance is always the
horizontal projection of the points. To create a horizontal dimension line, the
Toolidx and CurrentFigure property should be set as follows.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := 'THDimLine';

To draw a horizontal dimension line PowerCad needs three points. The
first two points are the points that defines the measured distance and the third
point defines the location where main line will be drawn. Powercad draws two
bounding lines 2 mm apart from the distance points to the y location of the third
point. The main line is drawn according to the Labeling style of the dimension
line. A horizontal dimension line can not be rotated or mirrored. This dimension
line provides 7 styles of labeling as illustrated below.

1. Inside 2. Right 3. Left 4. Left Top 5. Left Bottom 6. Right Top 7. Right Bottom

Vertical Dimension Lines

Shows the vertical distance between two points. The end of the bounding
points may be in different x locations. The distance is always the vertical
projection of the points. To create a vertical dimension line, the Toolidx and
CurrentFigure property should be set as follows.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := 'TVDimLine';

To draw a vertical dimension line PowerCad needs three points. The first
two points are the points that defines the measured distance and the third point

LabelPrefix = 'd= '
LabelSuffix = ' mm'

51

defines the location where main line will be drawn. Powercad draws two
bounding lines 2 mm apart from the distance points to the x location of the third
point. The main line is drawn according to the Labeling style of the dimension
line. A vertical dimension line can not be rotated or mirrored. This dimension
line provides 7 styles of labeling as illustrated below.

1. Inside 2. Top 3. Bottom 4. TopLeft 5. TopRight 6. BottomLeft 7. BottomRight

Aligned Dimension Lines

Shows the real distance between two points. To create an aligned
dimension line, the Toolidx and CurrentFigure property should be set as follows.

PowerCad1.ToolIdx := toFigure
PowerCad1.CurrentFigure := 'TADimLine';

To draw an aligned dimension line PowerCad needs three points. The
first two points are the points that defines the measured distance and the third
point defines the location where main line will be drawn. Powercad draws two
bounding lines 2 mm apart from the distance points to the location of the third
point. The main line is drawn according to the Labeling style of the dimension
line. An aligned dimension line can be rotated or mirrored. This dimension line
provides 3 styles of labeling as illustrated below. But there is one more property
AlwaysHorizontal that also defines the style of Labeling.

AlwaysHorizontal = False Labeling = 1. Inside 2. Left 3. Right

AlwaysHorizontal = True Labeling = 1. Inside 2. Left 3. Right

52

6 PowerCad Interface
In software engineering; the word Interface is used for anything which is

in the middle of two things to provide the communication. You are familiar the
word “user interface” which is used for the graphical controls that the user deals to
communicate with the main software working in the background.

When we speak about the interface of a class we mean something same in
function but different in form. The interface of the class is the members of the
class that the programmer can access and make use of . These class members are
properties and methods of the class. When you set a property of a class or make a
call to a method, you make a change in the behaviour of the object or you make
the object to behave in the way you want.

In PowerCad, the drawing is organized as Layers, and as the Figures that
are related with these layers. So for the layer functionality, we have a class
definition called “TLayer”, and for the figures in these layers we have another
class definition called “TFigure”. In fact, TLayer and TFigure definitions have got
factory privacy, and at the beginning, it is not intended to document these classes.
But now, it is clear that using these classes directly will result more performance
than using PowerCad methods.

6.1 Accessing Layers and Figures
You can access powercad database through the lists or by storing the

handles returned by the creator methods. Also you can access the selected figures
through the Selection list.

Using The Lists

The Layers are stored in the Layers list of the TPowerCad class. To get
this list just use the statement below.

PowerCad1.Layers

You shouldn’t make any modification on this list directly unless you are
not a PowerCad expert. (This means don’t add or remove items from this list).
This list is just should be used for accassing the Layer objects. To get a layer from
the list you should use the layer index. 0 is used fro the base layer and others so
on.

PowerCad1.Layers[0]

But the above statement is just a pointer. To be able to use it as Layer you
should typecast it.

Var
LHandle: integer;
MyLayer: Tlayer;

begin
LHandle := PowerCad1.Layers[0];
MyLayer := Tlayer(LHandle);
MyLayer.Visible := seen;
.
.

end;

53

The Figures are stored in the Figures list of the TPowerCad class. To get
this list just use the statement below.

PowerCad1.Figures

You shouldn’t make any modification on this list directly unless you are
not a PowerCad expert. (This means don’t add or remove items from this list).
This list is just should be used for accassing the Figure objects. To get a figure
from the list you should use the figure index.

PowerCad1.Figures[0]

But the above statement is just a pointer. To be able to use it as Figure you
should typecast it.

Var
FHandle: integer;
MyFigure: TFigure;

begin
FHandle := PowerCad1.Figures[0];
MyFigure := TFigure(FHandle);
MyFigure.Move(10,10);
.
.
.

end;

Using The Return Handles

All of the creator methods of the PowerCad returns the handle of the
created object. If it is a Layer, the handle of the layer object is returned or if it is
a figure the handle of the figure is returned.

You should also typecast the returning handle to its original class.

Var
Lhandle,Fhandle: integer;
MyLayer: Tlayer;
MyFigure: TFigure;

Begin

Lhandle := PowerCad1.NewLayer(‘MyLayer’);
MyLayer := Tlayer(Lhandle);

FHandle := PowerCad1.Rectangle(…);
MyFigure := TFigure(Fhandle);
MyFigure.GetBounds(…);

End;

54

Using The Selection List

The selection list includes the handles of the selected figures. You can
access the selected figures in this way.

Var
MyFigure: TFigure;

Begin

MyFigure := TFigure(PowerCad1.Selection[0]);
MyFigure.GetBounds(…);

End;

6.2 “TFigure” Interface

TFigure is the base class for all figure classes. Normally through this class
interface you can do all common operations. But figure specific operations (eg:
To arrange the transparency of a Bitmap figure), should be handled through the
interface of the class of that figure. In this section we will first see how to use the
base class interface, and then how to use the derived classes’ interfaces.

TFigure = class(TObject)
 Owner: TComponent;
 // The Owner is the PowerCad Object that involves the figure

 Name: String;
 // The name of the figure. You can set it as you want

 Handle: TFigHandle;
 // Handle is the pointer to the figure object itself. It is a
 // read only value.

 LayerHandle: LongInt;
 // The pointer to the layer object that the figure is related

 Width: integer;
 // The Pen Width

 Color: integer;
 // The Pen Color

 Style: integer;
 // The Pen Style

 RowStyle : Integer;
 // The row style. Applicable if the figure is a line or open
 // polyline.

 BrC,BrS : integer;
 // The Brush Color and Brush Style. Applicable if the figure
 // is a closed figure.

 PointCount: integer;
 // The number of the points used for drawing the figure

55

 RegHandle : integer;
 // The Handle to the Windows Region created for the figure.

 Data: Pointer;
 // A pointer to a user specified data for each figure.

 Modified: Boolean;
 // Used for internal purpose normally. Set this value to true
 // if you want the figure to refresh itself.

Function Edit: Boolean;virtual;
 // Calls the edit dialog of the figure if exists. Returns
 // true if the user edits the figure.

Procedure GetBounds(var figMaxX,figMaxY,figMinX,figMinY:
 integer);virtual;
 // Gives the bounds of the figure.

Function GetBoundRect:TRect;virtual;
 // Gives the bounds of the figure as a Trect.

Procedure Move(deltax, deltay: integer);virtual;
 // Moves the figure in x and y direction

Procedure Rotate(aAngle: integer; cPoint: TPoint);virtual;
 // Rotates the figure around cPoint with the angle aAngle.

Procedure Mirror(Point1,Point2: TPoint);virtual;
 // Mirrors the figure relative to a line from point1 to
 // point2.

Procedure Scale(percentx,percenty: integer;
 rPoint: Tpoint);virtual;
 // Scales the figure with percentx in width and percenty in
 // height according to the rPoint.

Function IsPointIn(x,y:integer): boolean; virtual;
 // Returns true if the point(x,y) is in and/or on the figure.

Function CheckifInArea(area: TRect): boolean;
 // Returns true if the figure is entirely in the given area.

Function Duplicate: TFigure; virtual;
 // Duplicates the figure. The return value is the new figure.

Procedure Select;
 // Selects the figure

Procedure Deselect;
 // Deselects the figure

Procedure GetSourceText(var List: TStringList);virtual;
 // Gives the source text of the figure, The list parameter
 // should be created.

Procedure WriteToStream(Stream: TStream);virtual;
 // Stores the figure data to the given stream.

Procedure Draw(DEngine:TPCDrawEngine;isFlue:Boolean);virtual;
 // Draws the figure with the given Dengine. IsFlue specifies
 // if it will be draw as grayed.

56

 Procedure DrawFigureGuides(DEngine: TPCDrawEngine);virtual;
 // Draws the guides of the figure. Such as a cross for the
 // center of a circle.

Procedure DrawSelectionPoints(DEngine:TPCDrawEngine;
 isFlue:Boolean);virtual;
 // Draws the selection points of the figure.

Class Function CreateFromSource(lines: TStringList;
 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent): TFigure;
 // Creates a figure with the given source text.

Class Function CreateFromSStream(Stream: TStream;
 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent): TFigure;
 // Creates a figure with the given stream.

Property ControlPoints[Index : integer]:Tpoint;
 // Gives the control point with the Index. For the first one
 // use 1.Applicable in ellipse and bezier formed polyline.

Property FigurePoints[Index : integer]:Tpoint;
 // Gives the figure point with the Index. For the first one
 // use 1.
end;

6.3 The Derived Figure Interfaces
Normally, almost all virtual functions of TFigure class are reimplemented

in each derived figure class to provide figure specific behaviour. So normally the
interface of a derived class is more crowded than the given interfaces below. The
below interfaces are only the figure specific interface members, normally for a
TLine class you can still use, for example, the Move method, but since they are
explained above in the base class, below interfaces will not include the comman
interface members.

6.3.1 “TLine” Interface

TLine = class(TFigure)
Procedure SetJFigure1(jf:TFigure);

 // This method will join the first point of the line with the
 // given figure. If it is nill the existing bound will be
 // broken.

Procedure SetJFigure2(jf:TFigure);
 // This method will join the second point of the line with
 // the given figure. If it is nill the existing bound will be
 // broken.

Procedure UnBound;
 // This method will broken the bounds to the figures.

constructor create(aX1,aY1,aX2,aY2,w,s,c: integer;
 row:integer;LHandle: LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);
 // The constructor:
 // aX1,aY1,aX2,aY2: The coordinates
 // w,s,c: pen width,style and color
 // row: The row style (0-6)

57

 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.2 “TEllipse” Interface

TEllipse = class(TFigure)
 alen,blen : integer;
 // The vertical and horizontal radius of the ellipse

constructor create(cX,cY,len1,len2,aAngle,w,s,c,abrs,abrc:
integer; LHandle:LongInt; aDrawStyle: TDrawStyle;

 aOwner: TComponent);
 // The Constructor:
 // cX,cY: The Center point coordinates
 // len1,len2: the radius values
 // aAngle: the angle parameter in 1/10 degrees.
 // w,s,c: pen width,style and color
 // abrs,abrc : The brush style and color
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.3 “TCircle” Interface

TCircle = class(TFigure)
 radius : integer;
 // The radius of the circle

constructor create(cX,cY,rad,w,s,c,abrs,abrc:
integer; LHandle:LongInt; aDrawStyle: TDrawStyle;

 aOwner: TComponent);
 // The Constructor:
 // cX,cY: The Center point coordinates
 // rad: the radius
 // w,s,c: pen width,style and color
 // abrs,abrc : The brush style and color
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.4 “TArc” Interface

TArc = class(TFigure)
 radius : integer;
 // The radius of the arc circle

 ArcStyle: integer;
 // The style of the arc. 0:normal 1:Pie 2:Chord

constructor create(cX,cY,rad,lx1,ly1,lx2,ly2,w,s,c,

58

 abrs,abrc,aArcSyle:integer;
 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);
 // The Constructor:
 // cX,cY: The Center point coordinates
 // rad: the radius
 // lx1,ly1,lx2,ly2: the line ends that forms the arc
 // w,s,c: pen width,style and color
 // abrs,abrc : The brush style and color
 // aArcStyle: The style of the arc
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.

Procedure Invert;
 // Inverts the drawing direction of the arc.
end;

6.3.5 “TRectangle” Interface

TRectangle = class(TFigure)
constructor create(aX1,aY1,ax2,ay2,w,s,c,

 abrs,abrc:integer;
 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);
 // The Constructor:
 // aX1,aY1,aX2,aY2: The corner point coordinates
 // w,s,c: pen width,style and color
 // abrs,abrc : The brush style and color
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.6 “TVertex” Interface

TVertex = class(TFigure)
constructor create(aX,aY:integer;

 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);
 // The Constructor:
 // aX,aY: The point coordinates
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.7 “TPolyLine” Interface

TPolyline = class(TFigure)

constructor create(Points: Array of TPoint;
 nbrPoint,w,s,c,abrs,abrc: integer;row:integer;
 aClosed: Boolean; LHandle: LongInt;
 aDrawStyle: TDrawStyle; aOwner: TComponent);

 // The Constructor:

59

 // Points: The point array that will be used to form the
 // polyline, the control points - that are used in bezier
 // forms - are not included in this array.
 // nbrPoint: the number of the points in the array
 // w,s,c: pen width,style and color
 // abrs,abrc : The brush style and color
 // row: the row style used at the ends (0-6)
 // aClosed: the closed property
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.

Procedure SetJFigure1(jf:TFigure);
 // This method will join the first point of the line with the
 // given figure. If it is nill the existing bound will be
 // broken.

Procedure SetJFigure2(jf:TFigure);
 // This method will join the second point of the line with
 // the given figure. If it is nill the existing bound will be
 // broken.

Procedure UnBound;
 // This method will broken the bounds to the figures.

Procedure ConvertToBezier;
 // This method converts all points to bezier points.The whole
 // polyline will behave in bezier form.

Procedure ConvertToPolyLine;
 // This method converts all points to corner points.The whole
 // polyline will behave in linear form.

Procedure ArrangePoint(ps: TBezierPoint; index:integer);
 // This method converts a specific point defined by index
 // parameter to the form defined by ps parameter.
 // psCorner: Linear corner
 // psCurve: Bezier form, the control line is tangent to the
 // curve.
 // psCurveCorner: Bezier form, the control line is cornered

Procedure ArrangeSelPoint(ps: TBezierPoint);
 // This method converts the selected point of the
 // polyline to the form defined in ps parameter.

Procedure GetControlPoints(index: integer;
var cp1,cp2:TPoint);

 // This method gives the control points of a polyline point
 // if it is in bezier form.

Procedure SetControlPoints(index: integer; cp1, cp2: TPoint);
 // This method sets the control points of a polyline point
 // if it is in bezier form

Procedure SelectPoint(SeqNbr: Integer);
 // This method select the polyline point specified in SeqNbr
 // parameter.

Property Closed: Boolean;
 // The polyline behaves like polygon when it is closed.
end;

60

6.3.8 “TBMPObject” Interface

TBMPObject = class (TFigure)
 Picture : TBitmap;
 // The Bitmap that is drawn. If you rset this field you
 // should set the modified property to true also.

 PictureName : string;
 // The file name of the bitmap when it is created from file.
 // You can set this field to any value you want

 ClipFigure: Tfigure;
 // If you want the bitmap to be clipped, set this field to
 // the clipping figure. To unclip, set this value to nil.

constructor Create(x,y: integer; afName: string;
 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);

 // The Constructor:
 // x,y: The point coordinates that the bitmap will be located
 // afName: the file path to the bmp file on disk, that will
 // be inserted
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.

constructor CreateEx(x,y: integer; aBitmap: TBitmap;
 LHandle:LongInt; aDrawStyle:TDrawStyle;
 aOwner: TComponent);
 // The Extended Constructor:
 // x,y: The point coordinates that the bitmap will be located
 // aBitmap: The bitmap object that will be inserted
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.

Procedure FlipHorz;
 // Use this method to flip the bitmap horizontally.

Procedure FlipVert;
 // Use this method to flip the bitmap vertically.

Property Transparent: Boolean;
 // Use this property to control the transparency of the
 // bitmap.

end;

6.3.9 “TText” Interface

TText = class(TFigure)
 Color : TColor;
 // The color of the text

 Text: string;
 // The string that is drawn

 Font: TFont;

61

 // The font properties of the text. Not all fields active.
 // Use Font.Name, Font.Charset, Font.Style

 Height: integer;
 // The height of the font in PowerCad unit dmm (1/10 mm)

 wRatio: double;
 // The ratio of the width to the height. Default 0.8

constructor Create(aX1,aY1,h:integer;ratio: double;
atext: string; FontName:String; FontCharset: Byte;

 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);

 // The Constructor:
 // ax1,ay1: The coordinates that the text will be located
 // h: the height of the text in 1/10 mm unit.
 // ratio: the width ratio to the height of the text
 // aText: the text to be drawn
 // FontName: the name of the font of the text
 // FontCharset: The characterset of the font.
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.10 “TRichText” Interface

TRichText = class(TRectangle)
 re: TRichEdit98;
 // The Invisible RichEditControl 2.0. You can use this
 // control to access the rich text content

 MetaFile: TMetafile;
 // This is the metafile that the rich text is drawn on.

constructor create(aX1,aY1,ax2,ay2,w,s,c,
 abrs,abrc:integer;
 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);
 // The Constructor:
 // aX1,aY1,aX2,aY2: The corner point coordinates
 // w,s,c: pen width,style and color
 // abrs,abrc : The brush style and color
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.11 “TOLEObject” Interface

TOLEObject = class(TRectangle)
 ole: TOleContainer;
 // The Invisible Ole Container control. You can use this
 // control to access the ole object content

 MetaFile: TMetafile;

62

 // This is the metafile that the ole object is drawn on.

constructor create(aX1,aY1,ax2,ay2,w,s,c,
 abrs,abrc:integer;
 LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);
 // The Constructor:
 // aX1,aY1,aX2,aY2: The corner point coordinates
 // w,s,c: pen width,style and color
 // abrs,abrc : The brush style and color
 // Lhandle: The handle to the layer it is related.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
 // aDrawStyle: The DrawStyle. Use dsNormal for normal
 // drawings. dsTrace for creating temporary tracing figures.
 // aOwner: The Owner. Pass the PowerCad object.
end;

6.3.12 “TFigureGrp” Interface

TFigureGrp = class(TFigure)
 InFigures: TList;
 // The figures that are in the group

 Combined: Boolean;
 // The group will behave combined when this field is true

Procedure UnGroup;
 // Use this method to ungroup a group

Procedure AddFigure(fig: TFigure);
 // Add figure to the group

constructor create(LHandle: LongInt;aOwner: TComponent);
 // The Constructor:
 // Lhandle: The handle to the layer it is related.
 // aOwner: The Owner. Pass the PowerCad object.

end;

6.3.13 “TBlock” Interface

TBlock = class(TFigureGrp)
 Blockname: String;
 // The block name of the block

constructor create(LHandle: LongInt;aOwner: TComponent);
 // The Constructor:
 // Lhandle: The handle to the layer it is related.
 // aOwner: The Owner. Pass the PowerCad object.

end;

63

7 PowerCad in Background: Using DrawEngine Directly
In some applications, the Cad functionality is embedded in the

applications modules and the behaviours are handled in the style of that
application. So in these cases the developer doesn’t need the PowerCad editor on
his forms, but he needs the CAD functionality such as creating figures through
code, making use of them in someway and finally drawing them on an applicaton
defined Canvas (Device Context Wrapper Class in Delphi).

There are several ways to handle Cad in background but in any case you
will need to create the object database (the figures that will be drawn). So firstly
let us show the ways to create an object database.

7.1 Using the “Invisible” Way

The first way is using TPowerCad as an invisible Cad controller. In this
case, the PowerCad control will be existing in the background but it will be used
only an object database, and the figures will be drawn to a different deice context
(dc).

Now let us remember that we should include some units in our uses
clause.

Uses PowerCad, DrawObjects, DrawEngine, PCTypesUtils;

And, we should create the PowerCadControl which will be in the
background.

Var
CadControl: TPowerCad;
.
.
CadControl := TPowerCad.Create(Form1);
CadControl.Visible := false;

Now, we have got the control in the background and we know that we
have a Base Layer (LayerNumber = 0) in the control by default. If we want more
layers we can create by layer methods as described before.

So now, we can create our figures by calling the proper methods of
PowerCad.

CadControl.Rectangle(...);
CadControl.Circle(...);
CadControl.Ellipse(...);
CadControl.InsertPicture(...);

The final step is of course, drawing the figures on an application defined
canvas. So let us remember that Coordinates in Cad-Drawing is a relatively
interpreted case, this means; if you want draw something on somewhere you
should give a method to the drawengine , a method that will show the way how
the coordinates will be interpreted. Normally PowerCad uses a dmm based unit
system, and user specified coordinate origin. But this is the system used by
PowerCad when it handles the drawing by itself. So in custom canvas drawing

64

you are not limited with PowerCad’s coordinate system, you can use any of the
systems unless you know what you do.

So as a result, one main rule about the Coordinate System: You should
be consistent with the coordinates you give the figure drawing methods,
when you specify the method of interpreting the coordinates. Of course the
easiest way is to define the coordinates as pixel units of the windows (1 unit is
one pixel, the origin is top left, the y value is positive to bottom), if your device
context is a windows dc as a form canvas. In this case you shouldnt do anything
extra in interpretter methods by leaving them blank.

So, how we will specify the interpreter methods. Everything is in
DrawEngine object. You shuld create a drawEngine object and give all
information about your canvas in this.

Var
MyEngine: TPCDrawEngine;
.
.
.
MyEngine := TPCDrawEngine.Create;

// First Let us give the Canvas
MyEngine.Canvas := Form1.Canvas;

// And the interpreter methods
MyEngine.ConvertPoint := MyPointConvertProc;
MyEngine.ConvertLen := MyLenConvertProc;
.
.

Procedure TForm1.MyPointConvertProc(var x,y:integer),
Begin
 // here you should write your conversion code for
 // points
 // the coming parameters are the coordinates that are
 // specified in the figure methods.
End;

Procedure TForm1.MyLenConvertProc(var Dim:integer),
Begin
 // here you should write your conversion code for
 // dimensions such as radius of a circle
 // the coming parameter is the dimension that are
 // specified in the figure methods.
End;

After the DrawEngine is specified, now you can draw the figures by
calling their draw methods.

Var
MyFigure: TFigure;
i: integer;
Begin
For i := 0 to CadControl.Figures.Count-1 do
Begin

 MyFigure := TFigure(CadControl.Figures[i]);
 MyFigure.Draw(MyEngine,false (*not flue*));
End;

End;

65

7.2 Using the “User” way
In this way, you shouldnt use the PowerCad as a background cad

controller. Because as you see above, PowerCad is used just for storing the
objects. So to have more performance, you can create the figure by your on, put
them in your own user list, and draw them to your canvas with a draw engine.
This way will be a little different then the first one, and so I will ony show the
different steps.

First Create your list ,create the figures and store them in your list.

Var
MyFigures: TList;
MyFigure: Tfigure;
.
.
.
MyFigures := Tlist.Create;

// Create a rectangle and add it to the list

MyFigure := TRectangle.Create(…);
MyFigures.Add(MyFigure);

// Create a circle and add it to the list

MyFigure := TCircle.Create(…);
MyFigures.Add(MyFigure);

And now you should handle creating the DrawEngine as it is described in
the first way. For drawing the figures we will use our own list now.

Var
MyFigure: TFigure;
i: integer;
Begin
For i := 0 to MyFigures.Count-1 do
Begin

 MyFigure := TFigure(MyFigures[i]);
 MyFigure.Draw(MyEngine,false(*not flue*));
End;

End;

7.3 Two Examples for interpreter methods of DrawEngine
In this section we will show 2 examples for the coordinate system

interpreting in DrawEngine object.

7.3.1 The First

In the first xample let us assume that, we want to use the original
windows coordinate system. That is;

1 unit = 1 pixel
origin = top left
y direction = positive to bottom

66

You know this and use it when you make drawings on windows device
context.

When creating our figures we will give the coordinates according to this
system.

CadControl.Circle(100,100,50,…);

The circle center is in Point (100,100) and the radius is 50.

The figure coordinates are specified in Windows default and so the
interpreter methods will be left blank.

Procedure TForm1.MyPointConvertProc(var x,y:integer),
Begin
End;

Procedure TForm1.MyLenConvertProc(var Dim:integer),
Begin
End;

7.3.2 The Second

In the second example let us assume that, we want to use a metric
measurement system. That is;

1 unit = 1 mm
origin = bottom left
y direction = positive to top

When creating our figures we will give the coordinates according to this
metric system.

CadControl.Circle(50,50,25,…);

The Circle center is in Point (50,50) (50 mm from bottom and 50 mm
from left) and the radius is 25 mm .

The figure coordinates are specified in metric system and so we should
decide how we will interpret 1 mm to pixel. Let us assume that for one millimeter
we use 4 pixels.

Procedure TForm1.MyPointConvertProc(var x,y:integer),
Begin
 x := x * 4;
 y := y * 4;
 // the y value is considered to be positive to top and
 // the origin is bottom left. So the y value should be
 // converted to windows default origin
 y := form1.height – y;
End;

Procedure TForm1.MyLenConvertProc(var Dim:integer),
Begin
Dim := Dim * 4;

End;

67

We can also use a zoom factor. So the value 4 is for the actual size of the
drawing .It can be zoomed with a zoom factor. For a 50% view the zoom factor
will be 0.5 and for a 200% view the zoom factor will be 2.

Procedure TForm1.MyPointConvertProc(var x,y:integer),
Begin
 x := x * 4 * ZoomFactor;
 y := y * 4 * ZoomFactor;
 y := form1.height – y;
End;

Procedure TForm1.MyLenConvertProc(var Dim:integer),
Begin
Dim := Dim * 4 * ZoomFactor;

End;

68

8 PowerCad Skin
The PowerCad is designed to be used in every type of applications which

need CAD capability. So each application has its own style of interface, and
developers mostly want to hide the general well-known components in their
own interface. This is because of the need of originality of an application. So
with the use of standart interfaces, PowerCad also should provide developers a
communicaton level with their own interface. This means PowerCad is able to
communicate with the dialogs,toolbars or any other interface element of the
application while it is also providing a standart interface. In this chapter you
will see how the standart interface is used and next chapter , you will see
customization of the Interface.

8.1 The Object Inspector (Properties Window)
The Object Inspector is designed to modify

the properties of the drawen objects. The objects
(with its properties) are registered to the Object
Inspector in the runtime. Each property of an
object has a Property Type; and according to this
Type an editor is provided in the Object
Inspector for that property. When a property is
registered as ReadOnly, then it is locked to the
user updates through the Inspector.

Each object (figure) in PowerCad has got a
Name and Handle Property by default. The
name property can be edited through the
Inspector while the Handle property is read-only.
The Handle property gives the handle of a figure
and you have seen what can be done with a figue
handle, int the previous chapters.

The property types in the object
inspector can be listed as follows.

1. String Property
2. Integer Property
3. Extended (Real Numbers) Property
4. Boolean Property
5. Enum (Pick List) Property
6. Color Property
7. Font Property
8. Line Width Property
9. Line Style Property
10. Brush Style Property
11. FileName Property

For each of the below types, the Object Inspector provides a special
editor which is sometimes an edit box, sometimes a combobox, sometimes a
popup form.

69

8.2 ToolBars
The toolbars in the PowerCad package are visual wrappers for PowerCad

methods. Each button click results a method call in PowerCad. The toolbars are
registered to the PowerCad so that they are aware of PowerCad changes. This
means when something changes in PowerCad this toolbars are synchronized with
PowerCad current status. For example when the select tool button is down in Tools
Bar, if the user clicks on the Rotate button of the Transform Bar, the Tools Bar is
notified by this change and so it makes the down(selected) button up.

The ToolBars Together

The PowerCad ToolBars , PowerBars, are dockable bars. They are placed
on a TPCDock which can be aligned to top,bottom,left or right side of the form.
So to use a PowerBar, there should be a TPCDock on the form. After you place
the PowerBar on the PCDock, there is only one more thing to be able to use it.
Set the CadControl Property of the ToolBar to the PowerCad control on your
form. This will provide the communication between the Powerbar and powerCad
control.

The PowerBars Tab on Delphi Component Bar

In Left to Right Order : PCDock, PCAlignBar, PCToolsBar, PCTransformBar,
PCModifybar, PCCommandBar, PCFileBar, PCEditBar, PCArrangeBar.

8.3 Dialogs
Dialogs of PowerCad provides interfaces for arranging insider options of

powercad that also can be doen through property assignments and method calls.
The PowerCad dialogs are registered to PowerCad so that they are syncronized
with the changes of Powercad.

The PowerCad dialogs, PowerDialogs are invisible componets on the
form, when their show methods are called, the form (interface) of the dialog is
opened. Except two dialogs (PCSaveDialog and PCOpenDialog), the
PowerDialogs are non-modal dialogs, this means, you can still do your work on
the form when the dialog is open.

70

The PowerDialogs can be
visible (when the show
method is called), invisible
(when it is closed by its
close button) or floating
minimized (when it is
minimized by its minimize
button).

The PowerDialogs Tab on Delphi Component Bar

In Left to Right Order : PCAlignDlg, PCModifyDlg, PCLayerDlg, PCOptionsDlg,
PCPageDlg, PCTransformDlg, PCMacroDialog, PCBlockDlg, PCOpenDialog,
PCSaveDialog.

71

9 Make your own ToolBars and Dialogs
9.1 Making Custom ToolBars

As Declared before PowerBars are registered to the PowerCad Control
when you set the CadControl property of any of them. This provides the
communication of the Toolbar and the PowerCad. This communication is a two-
way communication: The toolbar sends the user actions to the PowerCad so that
PowerCad is effected, and PowerCad sends the change notifications to the
toolbar so that the ToolBar is effected. The toolbar effects Powercad by setting
its properties and calling its methods, and PowerCad effects the toolbar by calling
toolbar’s syncronize method so that the toolbar redesigns itself in this method.
This method can be considered as an OnChangeEvent procedure.

To make a registered toolbar, you should inherit a newBar from TBarBase
class. Because this base class encapsulates the necessary structure for the two-way
communication. In this chapter we will make a Cutom toolbar for inserting
blocks to PowerCad.

Step 1 : First open the New Component Dialog from Delphi Component Menu.
Select the TBarBase as Ancestor type. Write the class name as TPCBlockbar. And
select a palette page as you want.

Step 2: Delphi will generate a new unit for us an will show it on the editor when
we click on the OK button of the below dialog. Above is a complete listing of the
generated unit.

72

Listing 1 – Generated Unit
unit PCBlockBar;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs,PCMSBar, BarBase;

type
 TPCBlockBar = class(TBarBase)
private
{ Private declarations }

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('CustomPower', [TPCBlockBar]);
end;

end.

Step 3: Add the PowerCad,PcTypesUtil,Buttons units to the uses clause.

Listing 2 – The Uses Clause
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs,PCMSBar, BarBase,PowerCad,PcTypesUtil,Buttons;

Step 4: Now we will implement a new constructor. In this constructor we will
create a list that will be used for the buttons created for each block in the block
directory. Also for deleting this list we will implemet a destructor. Listing 2 and
Listing 3-4 shows how the constructor and destructor is reimplemented.

Listing 3 – The class interface with Constructor and Destructor
 TPCBlockBar = class(TBarBase)
private
{ Private declarations }

 FButtons: TList;
protected
{ Protected declarations }

public
{ Public declarations }
constructor Create(AOwner: TComponent);override;
destructor destroy;override;

73

published
{ Published declarations }

end;

Listing 4 – The implementation of Constructor and Destructor

constructor TPCBlockBar.Create(AOwner: TComponent);
begin
inherited;

 FButtons := TList.Create;
end;

destructor TPCBlockBar.destroy;
var i: integer;
begin
for i := 0 to FButtons.Count-1 do

 TSpeedButton(FButtons[i]).Free;
 FButtons.Free;
inherited;

end;

Step 5: In this step, we will create the buttons, but since we will create one
button for each block of the BlockDirectory of the PowerCad, we should know
the value of the CadControl property is assigned. So in the run time of the
constructor this property is nill. We will create the buttons when the user sets the
CadControl property so we will override the DoSetControl method of TBarBase.
Also we need an extra procedure for the OnClick Events of the created buttons.
Listing 5-6 shows how DoSetControl and ButtonClick procedure is implemented.

Listing 5 – The Interface of the class with the DoSetControl and ButtonClick procedure
 TPCBlockBar = class(TBarBase)
 ...
private

 ...
Procedure DoSetControl(Control:TPowerCad);override;

 Procedure ButtonClick(Sender:TObject);
end;

Listing 6 – Implementation of the DoSetControl and ButtonClick procedure
procedure TPCBlockBar.DoSetControl(Control: TPowerCad);
var BlockList:TStringList;
 i: integer;
 xButton:TSpeedButton;
begin
inherited;
for i := 0 to FButtons.Count-1 do

 TSpeedButton(FButtons[i]).Free;
FButtons.Clear;
if assigned(CadControl) then

 begin
 BlockList := TStringlist.Create;
 CadControl.GetBlockFileNames(BlockList);

For i := 0 to BlockList.Count-1 do
begin

 xButton := TSpeedButton.Create(Self);
with xButton do
begin

 parent := self;
 Groupindex := 1;

74

 Allowallup := true;
 Showhint := true;
 Hint := BlockList[i];
 Caption := 'B'+inttostr(i+1);
 OnClick := ButtonClick;

end;
 FButtons.Add(xButton);

end;
 BlockList.Free;
end;

end;

procedure TPCBlockBar.ButtonClick(Sender: TObject);
var xButton:TSpeedButton;
 bName: String;
begin
 xButton := Sender as TSpeedButton;
if assigned(CadControl) then
begin

 bName := xButton.Hint;
if fileexists(bName) then
begin

 CadControl.CurrentBlock := bName;
 CadControl.ToolIdx := toInsertCurrentBlock;

end;
end;

end;

Step 6: This Block bar can do its job, now. When the user clicks on a button, the
toolidx of the Powercad will be toInsertCurrentBlock and when the user clcik on
PowerCad the block will be inserted to the clicked location. But we will do one
more thing. Suppose that user has clicked on a button and so the clicked button is
down. But after this click again suppose that user has clicked on the select button
of the PCToolsBar. So in this case, we should make the our down button up in
the Blockbar. We know that for each change in PowerCad, the Syncronize
method of the bars are called so that if we reimplement the Syncronize method
we can handle this case. Listing 7-8 shows the reimplentation of the Syncronize
method.

Listing 7 – Class Interface with Syncronize Method
 TPCBlockBar = class(TBarBase)
 ...
public

 ...
Procedure Syncronize;override;

end;

Listing 8 – Implementation of the Syncronize Method
procedure TPCBlockBar.Syncronize;
var i: integer;
begin
inherited;
if assigned(CadControl) then
begin
if CadControl.ToolIdx <> toInsertCurrentBlock then
begin
for i := 0 to FButtons.Count-1 do

 TSpeedButton(FButtons[i]).Down:= False;
end;

75

end;
end;

Step 7: Now Install this unit as a New Component from Install Component
Menu. Listing 9 shows the full source code of the unit.

Listing 9 – Full Source code of the PCBlockbar.pas unit
unit PCBlockBar;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,Forms,
Dialogs,PCMSBar, BarBase,PowerCad,Buttons,PCTypesUtils;

type
 TPCBlockBar = class(TBarBase)
private
{ Private declarations }
FButtons: TList;
Procedure ButtonClick(Sender:TObject);
Procedure DoSetControl(Control:TPowerCad);override;

protected
{ Protected declarations }

public
{ Public declarations }
constructor Create(AOwner: TComponent);override;
destructor destroy;override;
Procedure Syncronize;override;

published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('CustomPower', [TPCBlockBar]);
end;

{ TPCBlockBar }

constructor TPCBlockBar.Create(AOwner: TComponent);
begin
inherited;

 FButtons := TList.Create;
end;

destructor TPCBlockBar.destroy;
var i: integer;
begin
for i := 0 to FButtons.Count-1 do

 TSpeedButton(FButtons[i]).Free;
 FButtons.Free;
inherited;

end;

procedure TPCBlockBar.DoSetControl(Control: TPowerCad);

76

var BlockList:TStringList;
 i: integer;
 xButton:TSpeedButton;
begin
inherited;

for i := 0 to FButtons.Count-1 do
 TSpeedButton(FButtons[i]).Free;
 FButtons.Clear;
if assigned(CadControl) then
begin

 BlockList := TStringlist.Create;
 CadControl.GetBlockFileNames(BlockList);

For i := 0 to BlockList.Count-1 do
begin

 xButton := TSpeedButton.Create(Self);
with xButton do
begin

 parent := self;
 Groupindex := 1;
 Allowallup := true;
 Showhint := true;
 Hint := BlockList[i];
 Caption := 'B'+inttostr(i+1);
 OnClick := ButtonClick;

end;
 FButtons.Add(xButton);

end;
 BlockList.Free;
end;

end;

procedure TPCBlockBar.Syncronize;
var i: integer;
begin
inherited;
if assigned(CadControl) then
begin
if CadControl.ToolIdx <> toInsertCurrentBlock then
begin
for i := 0 to FButtons.Count-1 do

 TSpeedButton(FButtons[i]).Down:= False;
end;

end;
end;

procedure TPCBlockBar.ButtonClick(Sender: TObject);
var xButton:TSpeedButton;
 bName: String;
begin
 xButton := Sender as TSpeedButton;
if assigned(CadControl) then
begin

 bName := xButton.Hint;
if fileexists(bName) then
begin

 CadControl.CurrentBlock := bName;
 CadControl.ToolIdx := toInsertCurrentBlock;

end;
end;

end;
end.

77

9.2 Making Custom Dialogs
PowerCad standart dialogs (PowerDialogs) are invisible components, that

encapsulates a form object in it. The dialogs are registered to the PowerCad when
their CadControl property is assigned a value. This regsitration provides the two-
way communication between the PowerCad and the dialog. In this section we
will see how we can make a standart dialog bu inheriting it from the base dialog
class TDlgBase.

In fact you can provide a dialog fucntionality just by designing a form,
and you can code specific powercad calls for specific user actions with controls
on your form. And you can refresh your form values with the PowerCad values
when its changed. You can be notified about this change by either a specific
PowerCad event in which you are inetrested or the general change event
onSycnronize. Yes, this a dialog. Why not?

So what does it provide us, to use the standart way, and develop our
dialogs by inheriting the registered dialog class. This doesn’t provide more
functionality, the thing is that, it is more general, more comman and a standart
way that can be documented.

In this section we will develop a new Dialog for Zooming the drawing
with a windows TrackBar. This development will be done in two phase. First we
will develop a form that includes a trackbar and fires an event procedure when
the Trackbar Position changes. In the second phase we will develop our invisible
dialog component that will encapsulate this form.

9.2.1 Designing the Dialog form

It is about your styles how you design a good looking form in Delphi, so
we will not here force you to a standart way. The only thing you should be bound
to is that you should provide an interface to the dialog component. In this
example we are just interested with the position of the control. So we will provide
a method for someone (the dialog class is the “someone” here) to set our
trackbar’s position, and we will provide a form property which is type of a
callback function for transferring the trackbar changes to the dialog component.
And to make our dialog form to be able to floating minimized, we will create a
FormRoller in the constructor.

Step1: Create a new form. Put a TTrackBar on it. Set the Min
property to 1, Max property to 25 and Position property to 10.
You can put some other things to make the form look better.
Name the form as ZoomForm. Make its FormStyle property
fsStayOnTop.
Step2: In the OnCreate event of the form create the
PCFormRoller and Make it Enabled.
Listing 1 – OnCreate Event Procedure of the form
procedure TZoomForm.FormCreate(Sender: TObject);
var wr : TPCRoller;
begin
 wr := TPCRoller.create(self);
 wr.Enabled := true;
end;

78

Step3: Include the unit PCFormRoll in the uses clause.
Listing 2- Uses Clause
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs,StdCtrls, ExtCtrls, ComCtrls,PCFormRoll;

Step4: Define a new procedural type; TChangeEvent, and a form property of this
type; FChangeEvent. This event will be called when the trackbar positon changes.
Listing 3 – Change Event
Type
TChangeEvent = procedure(Position: integer) of object;

type
 TZoomForm = class(TForm)
 ...
public

 FChangeEvent: TChangeEvent;
end;

Step5: Call the FChangeEvent (if it is assigned) in OnChange Event of the
TrackBar.
Listing 4 – Trackbar Change
procedure TZoomForm.TrackBar1Change(Sender: TObject);
begin
if assigned(FChangeEvent) then
 FChangeEvent(TrackBar1.Position);
end;

Step6: Save this unit as frmZoom.

9.2.2 Designing the dialog component

Step 1 : First open the New Component Dialog from Delphi Component Menu.
Select the TDlgBase as Ancestor type. Write the class name as TPCZoomDlg.
And select a palette page as you want.

79

Step 2: Delphi will generate a new unit for us an will show it on the editor when
we click on the OK button of the below dialog. Above is a complete listing of the
generated unit.

Listing1 – The generated Unit: PCZoomDlg.pas
unit PCZoomDlg;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs,DlgBase;

type
 TPCZoomDlg = class(TDlgBase)
private
{ Private declarations }

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('CustomPower', [TPCZoomDlg]);
end;

end.

Step 2: We will use the dialog form that we have constructed in the first phase. So
we will add the unit reference to the uses clause as in Listing 2.

Listing 2 – The Uses Clause
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,Forms,
Dialogs,DlgBase,frmZoom;

Step 3: First redefine the CadControl in published section, because in the base
class it is in the protected section for technical reasons. Then define a private field
for the dialog form named DialForm from TZoomForm type. Also define a
procedure for getting the Trackbar changes in the form. And in the constructor
we will create the form and we will set the event procedure of the form with our
procedure.Listing 3-4 shows the class inetrface and the constructor
implementation.

Listing 3 – The Class Interface
 TPCZoomDlg = class(TDlgBase)
private
{ Private declarations }

 DialForm: TZoomForm;
Procedure TrackChange(Position: integer);

80

protected
{ Protected declarations }

public
{ Public declarations }
Constructor Create(aOwner:TComponent);override;

published
{ Published declarations }
Property CadControl;

end;

Listing 4 – The Constructor Implementation
constructor TPCZoomDlg.Create(aOwner: TComponent);
begin
inherited;

 DialForm := TZoomForm.Create(self);
 DialForm.FChangeEvent := TrackChange;
 DlgName := 'Zoom';
end;

Step 4: Implement the TrackChange Procedure as to pass the trackbar position to
the CadControl (PowerCad) scale property. Not that this procedure will always
called when the Trackbar changes in the dialog form.

Listing 5- The TrackChange Procedure
procedure TPCZoomDlg.TrackChange(Position: integer);
begin
if assigned(CadControl) then

 CadControl.Scale := Position * 10;
end;

Step 5: Override the Show and Syncronize method. In Show proecure we will call
the forms show method and in the syncronize procedure we will set the trackbar
position with the cadcontrols scale value. Not that the syncronize method will be
called by PowerCad in each change. Lisiting 6-7 shows the class interface for the
overriden methodsa and their implementations.

Listing 6 – Class Inetrface for Show and Syncronize Method
 TPCZoomDlg = class(TDlgBase)
private

 ...
public
Procedure Show;override;
Procedure Syncronize;override;

end;

Listing 7 – Impelementation of Show and Syncronize Method
procedure TPCZoomDlg.Syncronize;
begin
inherited;
if (DialForm.Visible) and (assigned(CadControl)) then
begin

 DialForm.TrackBar1.Position := CadControl.Scale div 10;
end;

end;

procedure TPCZoomDlg.TrackChange(Position: integer);
begin
if assigned(CadControl) then

81

 CadControl.Scale := Position * 10;
end;

Step 7: Now Save and Install this unit as a New Component from Install
Component Menu. Listing 8 shows the full source code of the unit.

Listing 8 – Full Unit Source Code
unit PCZoomDlg;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,Forms,
Dialogs,DlgBase,frmZoom;

type
 TPCZoomDlg = class(TDlgBase)
private
{ Private declarations }

 DialForm: TZoomForm;
Procedure TrackChange(Position: integer);

protected
{ Protected declarations }

public
{ Public declarations }
Constructor Create(aOwner:TComponent);override;
Procedure Show;override;
Procedure Syncronize;override;

published
{ Published declarations }
Property CadControl;

end;

procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('CustomPower', [TPCZoomDlg]);
end;

{ TPCZoomDlg }

constructor TPCZoomDlg.Create(aOwner: TComponent);
begin
inherited;

 DialForm := TZoomForm.Create(self);
 DialForm.FChangeEvent := TrackChange;
 DlgName := 'Zoom';
end;

procedure TPCZoomDlg.Show;
begin
inherited;

 DialForm.Show;
 Syncronize;
end;

procedure TPCZoomDlg.Syncronize;
begin

82

inherited;
if (DialForm.Visible) and (assigned(CadControl)) then
begin

 DialForm.TrackBar1.Position := CadControl.Scale div 10;
end;

end;

procedure TPCZoomDlg.TrackChange(Position: integer);
begin
if assigned(CadControl) then

 CadControl.Scale := Position * 10;
end;
end.

83

10 Using and Making Blocks
Blocks are most essential elements of a drawing environment. They are

used to build up an available figure library that will be inserted to the drawings in
any time. The user can store frequently used drawing elements as blocks, and can
insert it to the drawings later.

In PowerCad a Block is registered FigureGroup which includes the basig
figures in itself. These blocks in PowerCad can be inserted in either through the
dialog interface or by calling the appropriate methods.

10.1 The Block Directory
In fact, PowerCad can insert blocks from any location as far as its path is

given. So it sound unneccassary to have a strict blcok directory for PowerCad, but
for PowerCad, the block directory is a ‘must be’ information since it is used in
Block Dialog . So Powercad has a property BlockDirectory that should be
assigned a value ending with a back-slash.

Property BlockDirectory:String;
//Example
PowerCad1.BlockDirectory := ‘C\MyPowerApp\Blocks\’;

10.2 Inserting Blocks Using The Block Dialog
The standart BlockDialog, TPCBlockDlg,

provides a visual way to insert a Block. The block
dialog should access the BlockDirectory of the
PowerCad to be able to work, so the blockdirectory
property should be assigned a valid value.

To be able to use a block dialog in your
application, you should put a TPCBlockDlg in your
form,a nd assign the Powercad control to its
CadControl property. To make it active in the
runtime, call its Show method.

In the BlockDialog there is a concept that
we call ‘library’. A library is infact a text file that
includes the refrences of some blocks. The library
is a logical group of blocks that serves for close
purposes. For instance you can create a library
named ‘KitchenStuff” for the blocks that are used
in akitchen drawing. So a library is also a quick way
to find a block.

In the side picture, the top combobox includes the available librarries and
the listbox includes the available blocks in the library.The bottom picture is a
preview for the current block. The popup menu that is activated by right click on
the blocklist is a menu to organize librarries and blocks with in them. The current
library is ‘Animals’ and the current block is ‘Donkey’.

You can use the popup menu actions for creating a
new blank library and inserting blcoks to the current library,
or removing the current block from the library

To insert the current block to the drawing drag
the preview of the block to the drawing, and drop it to

the location where you want the block to be inserted.

84

10.3 Inserting Blocks Using ToolIdx Property
As it is declared before the ToolIdx property specifies which action will be

executed on the PowerCad editor when the user activates mouse clicks. Mostly
the ToolIdx property works together with a different property such as CurentFigure.
For example; if the ToolIdx property is toFigure, the class name of the figure that
will be drawn should be specified in the CurrentFigure property.

By setting the ToolIdx property to a ‘block insertion’ tool, we can insert a
block with user’s mouse click, in two way. For these we will introduce two
different ToolIdx value. The first one is toInsertBlock and the second one is
toInsertCurrentBlock.

If you set the ToolIdx property to toInsertBlock, an opendialog will be
executed after the user clicks on the editor for the location of the block. And the
block will be inserted after the user selects a block from the opendialog.

Property ToolIdx:TPCTool;
PowerCad1.ToolIdx := toInsertBlock;

If you set the ToolIdx property to toInsertCurrentBlock, PowerCad will also
use a second property value to insert the block. It is the CurrentBlock property. In
this case, works go on a little bit different, and the difference is that the user is
not asked to select a block from an open dialog, instead the block that is defined
in the CurrentBlock property is inserted directly. Note that the full path of the
block should be provided in the currentblock. When the toolidx property value is
toInsertCurrentBlock, and a valid block path is given in CurrentBlock property then,
the block will be inserted to the location that is defined by user’s click.

Property ToolIdx:TPCTool;
Property CurrentBlock:String;
PowerCad1.ToolIdx := toInsertCurrentBlock;
PowerCad1.CurrentBlock := ‘c:\MyPowerapp\Blocks\Valve.pwb’;

10.4 Inserting Block Calling PowerCad Methods
There are 2 methods in PowerCad interface designed for the developers

to insert blocks. By using these calls, the standart block insertion ways are not
used, instead the developer provides insertion of the block independent from the
standart ways.

Function InsertBlockWithFileName (LayerNbr: integer;
 FileName:string; x,y:integer):TFigHandle;
//Example
PowerCad1.InsertBlockWithFileName(0,
 ‘c:\MyPowerapp\Blocks\Valve.pwb’, 50,120);
Function InsertBlockFromStream (LayerNbr: integer;
 Stream:TStream; x,y:integer):TFigHandle;
//Example
var xStream:TStream;
 FileName:String;
FileName := ‘c:\MyPowerapp\Blocks\Valve.pwb’;
xStream := TFileStream.Create(FileName,fmOpenRead);
PowerCad1. InsertBlockFromStream (0,xStream,50,120);
xStream.Free;

Both InsertBlockWithFileName and InsertBlockFromStream insert the block to
the given location given in x,y parameters. The LayerNbr parameter specifies the

85

number of the layer in which the block will reside. And in both functions the
return value is the figure handle of the inserted block. The difference between the
methods is the FileName and Stream parameters. In the first method the FileName
specifies the full path of the block that will be inserted, and in the second method,
the Stream parameter specifies the TStream object in which the block data is stored.

10.5 Making Blocks
Making something block in PowerCad means, saving a group of figures in

block format. In PowerCad there is a method for making the selected figures
block. This method is called ‘MakeSelectionBlock’. This method is a function
requires one string parameter for the filename of the block. The given path
should referenc any location on a valid disk, but it highly suggested that the
blocks should be saved to the block directory to be able to used with in Block
dialog.

The makeselectionblock method works only there is one selected figure in the
drawing. So if you want to make a block from more than one figures, first you
should group them all and then call the method when the group is selected.

Procedure MakeSelectionBlock (FileName:string);
//Example
PowerCad1.MakeSelectionBlock(‘c:\MyPowerApp\Blocks\New.pwb’);

86

11 Macros in PowerCad
In PowerCad, a macro is a userdefined procedure to be executed by

Powercad. By use of macros, users can handle user -specific common actions that
requires a logical process. For example, if user wants to draw a circle according to
the result of a complex mathematical parametric formula, then there should be a
need for writing a macro for this purpose. PowerCad can run macros that are
written in some documented standarts.

In PowerCad, normally macros are stored as independent text files if you
use the standart macro interface, the macro dialog. However, for powercad a
macro is a set of text lines which forms the script to be executed, and thse lines
can be stored in anywhere including the databases. When you send the macro as
a stringlist to the PowerCad, it will compile and run it through the inside script
engine.

So you can either use the standart macro interface, or provide your own
macro interface to your users and store the macro script in anywhere you want.
The only limitation here is that the script should be written in the language
standarts that PowerCad expects.

11.1 PowerCad Script Language - PSCL
Normally applications use industry standart script languages like visual

basic or jave, however the engines that are coded for these languages are so
environment dependant that most user computers will fail to run a vb or java
language. So Powercad has included its own script engine in itselg, and this script
engine is designed CAD spcific and also is extendable by the user.

This scipt engine is based on Pascal language, but to make it easy to write
a macro, the script language is designed as a limited pascal-like language. There
are only few keywords in it, however there is almost no cad functionality that can
not be done by using the macro-way.

The reserved words in PSCL (PowerCad Script Language) are the
keywords of original Pascal, and serves for the same functionality. Listing 1
shows the reserved words in PSCL.

Listing 1- Reserved Words in PSCL
Program, Label, Goto,Var, const, type, Begin, End, procedure,
function, record,

Byte, Word, Longint, Integer, ShortInt, Cardinal, SmallInt,
Real, Single, Double, Extended, Currency, Boolean, ByteBool,
WordBool, LongBool, String, Variant, Pointer

And, Or, Xor, Not, Shl, Shr, Div, Mod

True, False, Nil

If, then, else,

While, Repeat, Until, For, To, DownTo, Do

In PSCL the whole structure of a script, is like the structure of a Pascal
programme. Note that, in other script engines, a script has the structure of a
procedure while in PSCL the script has got the structure of a programme. So
You can write very complex scripts that can use procedures and functions
defined in itself.

87

Listing 2 Shows the structure of a script in PSCL and the definitions of
the script sections. Also a simple ‘HelloWorld’ example is implemented in the
listing.

Listing 2 – The structure of a macro script in PSCL
Program ScriptName; // The optional header.
Type // Optional Type declerations.
 // Can be used only for record definitions.
Var // Optional Variables section of the program.
Const // Optional Constants section of the program.

// Define Procedures and functions here to call from
// main block. Optional

Procedure Sample1;
Begin
End;

Function Sample2: integer;
Begin
End;

// Main Block
Begin
/// Write the main code of the program here
End.
// The Hello World Example
begin
 PrintMessage(‘HelloWorld’);
end.

11.2 The Function Library in PSCL
PSCL library provides users a CAD specific library including common

Delphi library procedures and PowerCad methods. This library is extending in
each update because new functions are added to the library. This library can also
be extended by the application developer with a special code interface as will be
documented in following sections. Listing 3 shows the Delphi runtime library
procedures and functions that can be used in a PSCL script. The details of these
functions are explained in ‘PSCL Reference’ chapter.

Listing 3 – Delphi RTL functions and procedures in PSCL
SetLength, Length, Insert, Pos, Copy, Str, Delete, IOResult,
Move, Randomize, Upcase, VarClear, VarCopy, VarType, VarAsType,
VarIsEmpty, VarIsNull, VarToStr, VarFromDateTime,
VarToDateTime, VarArrayOf, VarArrayDimCount, VarArrayHighBound,
VarIsArray, UniqueString, Fpower10, TextStart, MessageDlg,
MessageDlgPos, ShowMessage, ShowMessagePos, InputBox,
InputQuery, IntToHex, IntToStr, Format, AnsiUpperCase,
AnsiLowerCase, FloatToStr, AnsiCompareStr, AnsiCompareText,
Trim, TrimLeft, TrimRight, Val, Date, Time, Now, StrToDate,
DateToStr, DecodeDate, EncodeDate, FormatDateTime, StrToInt,
StrToFloat, FormatFloat

There are also CAD functions that represents an action on the PowerCad
drawing, mostly these CAd functions stand for a specific PowerCad class
method. But the parameter structures of PSCL CAD fucntions are not always
same as the PowerCad class methods. Because the macro language is as simple as

88

possible, so that there is a special communication interface with the PowerCad.
Listing 4 shows an example for comparing a method call of PowerCad and its
corresponding PSCL function.

Listing 4 – PSCL Cad function Example
// PowerCad Method Call for Drawing Circle
Function Circle(LayerNbr,cx,cy,radius,w,s,c,brs,brc:integer;
 select: boolean):TFigHandle;
//Example
PowerCad1.Circle(0,50,50,100,1,2,clRed,1,clBlue);
// PSCL Call for Drawing Circle
Function Circle(LayerNbr,cx,cy,radius: integer):TFigHandle;
//Example
Circle(0,50,50,100);

Almost each method of PowerCad has a corresponding CAD function in
PSCL, and also for setting the properties of tehPowerCad control PSCL serves
Set and GET functions. You can find the CAD functions that can be used in a
PSCL script in the ‘PSCL Reference’ chapter.

11.3 Running Macros Through Method Calls
The macro methods of PowerCad, provides an interface for running a

script from a stringlist, from a text or from a file. All of these sources, the
stringlist, the text or the file should include a valid script written in PSCL.

The RunMacro method is a procedure that expects one parameter, a
stringlist that includes the script. Lisitng 1 shows the interface of the method and
an example for it.

Listing 1 – RunMacro Method
Procedure RunMacro(Macro:TStringlist);
// Example
var
Script:TStringList;

Script := TStringList.Create;
Script.Add('Program Test;');
Script.Add('var x: integer;');
Script.Add('Begin;');
Script.Add('x := 100;');
Script.Add('ShowMessage(IntToStr(x));');
Script.Add('End.');

PowerCad1.RunMacro(Script);
Script.Free;

The RunMacroText method is a procedure that expects one parameter, a
string that includes the script. The cript lines should be seperated by a return
character in the string. Listing 2 shows the interface of the method and an
example for it.

Listing 2 – RunMacroText Method
Procedure RunMacroText(Macro:String);
// Example
var

89

Script:String;

Script := 'Program Test;'+#13+'var x: integer;'+#13+
 'Begin;'+#13+'x := 100;'+#13+
 'ShowMessage(IntToStr(x));'+#13+'End.';
PowerCad1.RunMacroText(Script);

These two methods can run any scripts even they are written in runtime.
But mostly macros are stored in files and PowerCad has also got a method for
running a script from a text file. It is called RunMacroByFileName and to use this
method the text file should include only the script that will be executed. Th
method expects one string parameter which stands for the full path of the script
file. Listing 3 shows the content of a script text file, and the way to execute it in
PowerCad.

Listing 3 – The RunMacroByFileName Method
*** Content of the text file Test.cmf ***
Program Test;
var x: integer;
begin
 x := 100;
 ShowMessage(Inttostr(x));
end.
Procedure RunMacroByFileName(MacroName:String);
//Example
PowerCad1.RunMacroByFileName('c:\PowerApp\Macros\Test.cmf');

11.4 Using Macro Dialog
Macro dialog provides a
graphical user interface for
writing macros and running
them. This dialog stores the
macros in separate text files
with the extension *.cmf,
and runs them by calling the
appropriate methods of the
PowerCad cad control. To
make a macro dialog active
in your application, put a
TPCMacroDialog on your
form and set the CadControl
property of it to the
PowerCad control on your

form. The macro dialog also has a property MacroDirectory that a valid path should
be assigned. To make the dialog visible in runtime, call the show method of the
macro dialog.

The macro dialog consists of a text editor and a toolbar for organizing
macros. On the toolbar there is a combobox and six buttons, the combobox
includes the list of the macros that are in the specified macro directory. To edit or
run a macro, you should select it from the combobox.

The new button on the toolbar creates a new macro with the name you
specify through an input box.

90

The Open button is used to load text file to the editor

The Save button saves the macro

The Delete button deletes the macro with its file

The Run button runs the macro on the PowerCad

The font button is used to set the font properties of the editor.

11.5 Extending PSCL – Add your own functions to the script language

PSCL is controlled with in a specific engine in PowerCad, so using the
PowerCad class interface this script language can be extended with your own
constants and functions.

To add a constant to PSCL, there is a method named AddPsclConstant.
The constant you want to add may include any value that a variant accepts,
because the constats in PSCL is behaved as variant in the background. This
procedure expects two parameters, the first one is a string which will stand for
the name of the constant and the second is a variant which stands for the value
of the constant. Listing 1 shows the interface and an example for AddPsclConstant.

Listing 1 – The AddPSCLConstant Method
Procedure AddPsclConstant(ConstName:String;Value:Variant);
//Examples
PowerCad1. AddPsclConstant('PI',3.14);
PowerCad1. AddPsclConstant('Err','There is an error');
PowerCad1. AddPsclConstant('Days',365);

To add a function or a procedure to the script language, PowerCad has
got two methods; AddPsclProcedure and AddPsclFunction. But there are some more
things that should be done when adding procedures or functions.

The proceudures/functions that will be added to the script language
should resembled by a real callback function in your code. Either it is a function
or a procedure that you will add, you will use the same callback function structure
to resemble it in the real code. The structure of this function should be as it is
shown in listing 2.

Listing 2 – The structure of PSCL callback function
function MyFunc(slf:TObject;var s:array of variant):variant;
Begin
 // Implementation
End;

The slf parameter is used for inside purposes, so skip it. But the
parameters that the macro writer has sent to your function are access with in the
s variant array. The index of this array is 0 based.

After you implemet your fucntion, now you can add it to the engine bu
using the AddPsclProcedure or AddPsclFunction methods. If you want this action
behave as a procedure use the first method else if you want it to behave as a
function use the second method. But in this case you should returna value in your
function code since it expects one. Both of the methods expects the name of the

91

function, the address of it and a Byte array for defining parameters. Listing 3
Shows the inerface for adding functions and procedures with the examples.

Listing 3 – The AddPSCLProcedure and AddPSCLFunction Method
Procedure AddPsclProcedure(ProcName:String;ProcAdr:TProcType;
 Params:array of byte);
Procedure AddPsclFunction(ProcName:String;ProcAdr:TProcType;

 Params:array of byte);
//Examples
PowerCad1.AddPsclFunction('Func',MyFunc,[0,0]);
PowerCad1. AddPsclFunction('Proc',MyProc,[2]);

As you can see in Listing 3, each method has a parameter named Params.
This parameter is an array of byte, and will be used to make the script engine
informed about our PSCL functions or procedures parameter count and
memory-types. Each element in the array represents a parameter of our PSCL
function/procedure, and thus the count of the element is the count of the
parameters. But if we want to add a PSCL function/procedure that expects no
parameter then we should pass an array that has a 2 in it. If we use 0 in any array
element then this will be a stack param,if we use 1 in any array element then this
will be a var parameter, if we use 2 then this will mean that no parameters
expected, and if we use 3 in the last element then the last parameter will be an
unlimited-count (open array) parameter. In below sections these memory-types of
parameters will be explained by examples.

Stack and Var Parameters

A stack parameter is normal parameter which the written value is copied to
procedures stack. This is the most-common usage of a paramter. A var
parameter is a pointer parameter wich the adress of the written variable id
sent to the procedure so that the value of the sent variable can be modified in
the procedure. Below, Listing 4 shows both the usage of the stack and var
parameter, from writing the function to using it in the script.

Listing 4- Stack and Var Parameters in PSCL
Let us assume that we want to add a procedure to the PSCL, which will add
two strings given in the first 2 string parameter, and writes the compund
string to the 3rd parameter . So the first two will be a normal(stack) parameter
and the last parameter will be a var parameter. The protype of the procedure
is given below. Notethat this prototype is in Delphi style, and hos nothing to
do with PSCL.

Procedure AddStrings(s1,s2:String; var NewStr: String);

Now First Let us see how we will add this function to the PSCL by using
PowerCad interface.

Powercad1.AddPsclProcedure('AddStrings',MyAddStrings,
 [0,0,1]);

As you can see above, we have written 0 for the first two parameters and 1
for the 3rd parameter. Because the first twp parameters are normal stack
parameters while the 3rd one is a var parameter.

92

Now as you can see above registration, we have given a function name for
this PSCL procedure, MyAddStrings. This is the name of our callback
function in our own code which does the real job. Now let us see what we
will do in this callback function.

function MyAddStrings(slf:TObject;var s:array of
 variant):variant;
Begin
 // s[0] : s1
 // s[1] : s2
 // s[2] : NewStr
 s[3] := s[0]+s[1];
End;

The parameter values that the macro writer (user) has written in the script is
brought to our real fucntion in the s array. And you already know that s array
is a zero based array and the PSCL procedure parameters are accessed in
order. Now let us see how this added PSCL procedure can be used in a script

Program Strings;
var myStr: String;
begin
 AddStrings('Today is ' , 'Friday', myStr);
 ShowMessage(MyStr); // Today is Friday
end.

No Parameters Expected!

If you want the procedure/function that you want to add PSCL expects no
parameter then you should pass one element array that has a 2 only. Below,
Listing 5 shows the way adding a non-param PSCL function/procedure.

Listing 5- Non-param PSCL fucntions/procedures
First let us assume our non-param operation. It may be a function which
returns the current date in string format. So it is assumed prototype will be as
follows:

Function Today:Integer;
First we should add this fucntion to the PSCL engine.

PowerCad1.AddPsclFunction('Today',myToday,[2]);

As you can see above, the parameter array includes one element which has
got a value 2. This means to the PSCL engine that the Year fucntion will not
expect any parameter.

Now Let us write the callback function that will execute the real code.

function myToday(slf:TObject;var s:array of
 variant):variant;
Begin
 result := DateToStr(Date);
End;

As you can see above the callback fucntion doesn’t use t s array, because we

93

know that the PSCL engine will not pass any parameter to the callback
function since the Today function is a non-param function. Now let us see
how we can use this fucntion in a PSCL script.

Program DateTime;
begin
 ShowMessage('Today is: '+Today); // Today is:12/02/2001
end.

Unlimited Parameters

As you know from programming, sometimes the parameter count of a
procedure or a fucntion is nodt limited as it is in WriteLn procedure. This is
also possible in PSCL, if a fucntion/procedure is added as including open-
array parameter, then PSCL handles this function/procedure in a specific
way. All parameters that are entered by the macro-writer is passed to the
callback function in a specific array, so that the array index for the unlimited
parameter holds also an array. But always we should be sure that the
unlimited parameter should be the only parameter or it should be the last
parameter. And if you want a parameter to behave unlimited then you shpuld
pass 3 for it in the paramter array when adding the function. Listing 6 shows
the usage of open array parameters.

Listing 6 – The unlimited-open array parameters in PSCL
Now first let us assume that we want to add a function which sums the
numbers we have sent and returns the multiplication of this sum with the
factor we have given in the first parameter. So our function will have two
parameters, the first will stand for the factor and the second will stand for the
numbers that will form the sum. The assumed protype of this fucntion is
below. The parametrs tha are in the bracket is the optional numbers that wil
be added.
Function FactorSum(Factor:Integer;
 Nbr1 [,Nbr2,Nbr3 …, Nbrn]:integer):integer;

Now let us see how we will add this function to PSCL.

Powercad1.AddPsclFunction('FactorSum',MyFSum,[0,3]);

As you can see above, we have written 0 for the first parameter and 3 for the
second parameter which will be unlimited. Now let us write the callback
function for this PSCL fucntion.

function myFSum(slf:TObject;var s:array of variant):variant;
var factor: integer;
 Count,i: integer;
 Sum: integer;
Begin
 // The first element in the array will include
 // the factor s[0]
 Factor := s[0];
 // The second element in the s array is an inner array
 // that includes the numbers to be added each other.
 // This nested array’s first (0) element is the count of
 // the nested array’s element
 Count := s[1][0];

94

 // Now let us add the numbers together to find the sum
for i := 1 to Count do Sum := Sum + s[1][i];

 // The result of the fucntion is
 // the multiplication of th factor by the sum.
 Result := Sum * Factor;
End;

Finally, we will see how we can use this PSCL function in an example script.

Program Sum;
var fSum1,fSum2: integer;
 factor: integer;
begin
factor:= 12;

 fSum1 := FactorSum(factor,1,7,5,3,4); // fSum1 = 240
 fSum2 := FactorSum(factor,6,2,2); // fSum2 = 120
 ShowMessage(InttoStr(fSum1+fSum2)); // 360
end.

95

12 Making and Using Plugins
12.1 What is a PowerCad Plugin

Mostly plugins are used to extend an application after its delivery. But this
extension is not an update of the executable, it is just a different file, mostly a
DLL, that provides the application new features. The most important case in the
plugin technelogies is the strict communication. This means that a plugin that is
designed for a pecific application should have a common interface that the
application expects. Powercad has encapsulated this technelogy in itself, so that
any application designed by PowerCad can be extended with the plugins created
independantly by the application developer or 3rd party developers.

A PowerCad plugin is a Windows Dynamic Link Library (DLL) that has
got a special export interface. If this DLL is in the plugin directory of the
PowerCad application and if it has got the special extension (*.pce), PowerCad
Loads this Dll, and a two-way communication is built up between the DLL
(plugin) and the PowerCad. We will see how this communication is executed but
before this we will see the Powercad interface for using plugins.

12.2 Making use of plugins
To be able to use a plugin, the DLL should be a Valid powercad plugin, it

should be located in PowerCad plugin directory, and it should have the extension
pce. PowerCad has got an interface for using the plugins, there is a property and
some methods that serves for the usage of the plugins.

The property PluginDirectory stands for the path to the location where
the plugins resides. The path should end with a back slash ‘\’ as in the example
below.

Property PluginDirectory:String;
// Example:
PowerCad1.PluginDirectory := 'C:\MyPowerCadApp\Plugins\';

Powercad doesn’t make any automatic loading for the plugins, the

application developer should load the plugins, in the right time of the application.
But normally the best time is the beginning of the application such as in the
OnCreate event of the main form. Note that , before using a plugin the plugins
should be loaded, and before loading the plugins, the plugin directory should be
specified. PowerCad has a method for loading plugins, LoadPlugins. This method
doesn’t expect any parameters.

Procedure LoadPlugins;
// Example:
PowerCad1.LoadPlugins;

After loading the plugins, you should know the names of the plugins and
their verbs. A verb is an action of a plugin that is to be called from the PowerCad
application. We can get the names of the plugins with the method GetPlugins,
and learn the verb names with the method GetPluginVerbs. The GetPlugin is a
function that returns a stringlist and excepts no parameter. Note that you should
release the returned stringlist after you use it.

Function GetPlugins:TStringList;
// Example:

96

var ThePlugins:TStringList;
ThePlugins := PowerCad1.GetPlugins;

And the GetPluginVerbs method is a function that returns a string which
includes the names of the plugins seperated by CR. So you can directly assign this
return to the Text property of a created TStringList. This method expects an
integer parameter which stands for the index of the plugin. The index of the
plugin is the index of its name in the returned StringList of GetPlugins method.

Function GetPluginVerbs(PluginIdx:Integer):String;
// Example:
var TheVerbsList:TStringList;
 TheVerbs:String;
TheVerbs := PowerCad1.GetPluginVerbs(0);
TheVerbList := TStringList.Create;
TheVerbList.Text := TheVerbs;

As the final step, we will explain how we can see a plugin in action. For
action, we need verbs to be activated, so we should call them by using the
method DoPluginVerb. This method is procedure which expects two integer
parameters, the first one stands for the index of the plugin while the second
stands for the Verb’s.

Procedure DoPluginVerb (PluginIdx,VerbIdx: integer);
// Example: Calling the first verb of the first plugin
PowerCad1.DoPluginVerb(0,0);

Below Listing is an example which shows the full mechanism of using the
plugins. In the listing there are two sections. In the first you see, in the OnCreate
event of the form the plugins are loaded and assigned to application menus. And
the second section is a procedure that is called by the menus to activate the
plugin verbs.

Listing – Using Plugins
procedure TForm1.FormCreate(Sender: TObject);
var Plugs: TstringList;
 VerbList: TStringList;
 Verbs: String;
 MenuItem,MenuSubitem: TMenuItem;
 a,b: integer;
begin

 PowerCad1.PluginDirectory :=
 extractfilepath(application.ExeName)+ 'plugins\';
 PowerCad1.LoadPlugins;
 Plugs := nil;
 Plugs := PowerCad1.GetPlugins;
 VerbList := TStringList.Create;
if plugs <> nil then begin
For a := 0 to Plugs.Count -1 do
begin

 MenuItem := TmenuItem.Create(self);
 MenuItem.caption := Plugs[a];
 MenuItem.Tag := a;
 PluginMenuItem.Add(MenuItem);
 Verbs := PowerCad1.GetPluginVerbs(a);
 VerbList.Text := Verbs;

For b:= 0 to VerbList.Count -1 do

97

begin
 MenuSubItem := TMenuItem.Create(self);
 MenuSubItem.tag := b;

 MenuSubItem.OnClick := PluginClick;
 MenuSubItem.Caption := VerbList[b];
 MenuItem.Add(MenuSubItem);

end;
end;

 Plugs.Free;
end;

 VerbList.Free;
end;

Procedure TForm1.PluginClick(sender: TObject);
var sub,par: TMenuItem;
Begin
 sub := sender as TMenuItem;
 par := sub.Parent;
 PowerCad1.DoPluginVerb(par.tag,sub.tag);
End;

12.3 Designing a PowerCad Plugin
To make a plugin, we will start a DLL project in Delphi. In this project,

we will implement a special dll which provides standart plugin entrypoints to the
PowerCad application. The exported functions and procedures of the plugin
should all have the stdcall calling convention. This Dll can include form(s) or
it can be formless plugin which does the jobs with taking any information from
the user.

A PowerCad application , because of the technelogy coded in PowerCad
classes, exports plenty of functions and procedures to provide an interface to an
outside application or a dll. So the plugin also uses this interface to make some
actions on the Powercad application. Infact with any application, byusing the
instance handle (HInstance) of the PowerCad application you can get the
addresses of the exported functions and you can call them just like you are calling
functions from a dll. In Powercad packages there is a unit called PCPlgLib and
this unit includes all necessary things to access the powerCad application and take
the exported functions’ adresses and assign them to defined functions. To make
all these things done, you should just call the GetAdresses procedure of this
unit. So you should include this unit in the uses clause of the plugin DLL.

Listing 1 – The Uses Clause of the Plugin DLL
uses
 SysUtils,Classes,Windows,Messages,PCPlgLib;

But as you can guess, a plugin technelogy should be based on a two-way
communication. This means, the PowerCad application should also call the
functions of the plugin dll as the plugin can call the fucntions of the application.
The application loads the plugin, and initialize this plugin by sending the
application instance handle to it. By this handle the plugin retreives the adresses
of the exported functions of the application. This communication continues as it
is described in the previous section.

So a plugin Dll should have an exported procedure to initialize itself. This
is a standart procedure that a plugin should export. The name of the procedure is
Init and it has got an integer parameter for the instance handle of the PowerCad
application that the plugin was loaded from.

98

Listing 2 – The Init Procedure of the Plugin
procedure Init(Owner: Integer); stdcall;
begin
 GetAdresses(Owner);
// Plugin specific intialization code

end;

In the above procedure, note that the functions are retreived from the
host PowerCad application, and all these are done in PCPlgLib unit by the use of
GetAdresses function. The Owner parameter is the HInstance of the host
PowerCad application. In this procedure, you can also write down your plugin
specific initializations, such as giving the initial values to your plugin variables.

The Powercad application will need the Verbs of your plugin. We have
seen “what a verb is’ in the previuos section, so we know that we should specify
some verbs for our plugin according to the purpose of our plugin.

For example, our plugin can be a charting plugin which creates pie charts
with some given data and edits these charts. So we will have two verbs called
NewChart and EditChart. We should give the names of these vers to the host
application so the standart plugin interface has got a second function called
GetVerbs. This function returns a pchar (it can be string in VB projects) which
includes the name of the verbs seperated by a return character.

Listing 3 – The GetVerbs function of the Plugin
Function GetVerbs:PChar;stdcall;
Begin
 result := 'NewChart'+#13+'EditChart';
End;

In the below example, we have got two verbs, and these verbs will be
activated by the application, using the plugins DoVerb procedure. This is also a
standart and ‘must be’ procedure, and in this procedure according to the 0 based
verb index, you excute the actions of the plugin. You can create forms, to ke
some parameters from the user, or just do something directly on the PowerCad
application. Note that you will use the exported functions of the application, and
thse fucntion ara available for the plugin by use of the PCPlgLib unit. If you look
at inside this unit, you will see plenty of functions and procedures with their
parameter structures defined. These exported PowerCad functions are almost
same as the PowerCad class methods, the only difference is that there is a pc
prefix at the beginning of the method name such as pcRotateSelection.

Listing 4 – The DoVerb procedure of the Plugin
Procedure DoVerb(VerbIndex: integer);stdcall;
Begin
Case VerbIndex of

 0: // NewChart
begin
//Write your plugin specific action code here
//according to the purpose of the verb.

end;
 1: // Edit Chart

begin
//Write your plugin specific action code here

99

//according to the purpose of the verb.
end;

end;
end;

So by now, we have introduced three standart ‘must do’ fucntions for
exporting in the plgin. And in this case our expor clause of the plugin dll will be
as it is in Listing 5.

Listing 5- The export clause of the plugin
exports

 Init name 'Init',
 GetVerbs name 'GetVerbs',
 DoVerb name 'DoVerb';

Listing 6 shows the complete code of a plugin based on PieChart
example.

Listing 6 – The complete code of a plugin based on an example
library PieChart;

uses
 SysUtils,Classes,Windows,Messages,Graphics,Controls,Forms,
 Dialogs,StdCtrls,Buttons,Grids,PCPlgLib;

procedure Init(Owner: Integer); stdcall;
begin
 GetAdresses(Owner);
// Plugin specific intialization code

end;

Function GetVerbs:PChar;stdcall;
Begin
 result := 'NewChart'+#13+'EditChart';
End;

Procedure DoVerb(VerbIndex: integer);stdcall;
Begin
Case VerbIndex of

 0: CreateNewChart;
 1: EditSelectedChart;
end;

end;

Procedure CreateNewChart;
Begin
// Plugin-verb specific code

End;
Procedure EditSelectedChart;
Begin
// Plugin-verb specific code

End;
exports

 Init name 'Init',
 GetVerbs name 'GetVerbs',
 DoVerb name 'DoVerb';

begin
end.

100

Listing 7 shows a list of functions that are exported by PowerCad
application. These functions will be exported from any application or Dll that
encapsulates Powercad objects in itself. You can use these functions with in your
plugin dll to execute any actions on the Powercad application.

Listing 7 – List of the exported functions of a PowerCad application
pcHideGrids,pcShowGrids,pcIsGrids,pcHideRulers,pcShowRulers,
pcIsRulers,pcHidePanel,pcShowPanel,pcIsPanel,pcHideGuides,
pcShowGuides,pcIsGuides,pcSetScale,pcGetScale,pcSetBgColor,
pcGetBgColor,pcSetGridColor,pcGetGridColor,pcGetGridStep,
pcSetGridStep,pcGetWWidth,pcSetWWidth,pcGetWHeight,
pcSetWHeight,pcGetActiveLayer,pcSetActiveLayer,pcSetPageLayout,
pcGetPageLayOut,pcSetPageOrient,pcGetPageOrient,
pcSetGuideTrace,pcGetGuideTrace,pcSelectAll,pcDeSelectAll,
pcNewLayer,pcDeleteLayer,pcDeleteLayerWithNbr,
pcDeleteAllUserLayers,pcShowLayer,pcHideLayer,
pcShowAllLayers,pcHideAllLayers,pcExHideLayer,pcFlueLayer,
pcExFlueLayer,pcMergeAllLayers,pcMergeVisibleLayers,pcRefresh,
pcRefreshSelection,pcDraw,pcDrawToDC,pcUndo,pcRedo,
pcGroupSelection,pcUnGroupSelection,pcDrawFigures,
pcDrawSelectionPoints,pcDrawFigureGuides,pcOrderSelection,
pcRemoveSelection,pcRotateSelection,pcMirrorSelection,
pcInvertArcsOfSelection,pcArrangeArcStyleOfSelection,
pcConvertToBezier,pcConvertToPolyline,
pcArrangePolyLineSelPoint,pcFlipImagesOfSelection,
pcSetTransparentOfSelection,pcScaleSelection,pcModifySelection,
pcGetSelectionBounds,pcAlignSelection,pcReselect,
pcGetSelectionCount,pcCollectSelectedFigurespcCheckByPoint,
pcSelectByPoint,pcSelectWithInArea,pcMoveSelection,
pcDuplicateSelection,pcArrayRectSelection,
pcArrayPolarSelection,pcMakeSelectionBlock,
pcBoundLineToFigures,pcBoundLinePoint,pcUnBoundLine,
pcMakeSelectedLinesPolyline,pcClipSelBitmapToSelFigure,
pcSaveToFile,pcLoadFromFile,pcIsTextFile,pcLoadFromSource,
pcLoadFromStream,pcSaveToStream,pcGetSourceText,
pcInsertBlockWithFileName,pcInsertBlockFromStream,
pcInsertBlockFromSource,pcExportAsWmf,pcSaveAsBitmap,
pcBmpPrint,pcPrintDrawing,pcPrintByTiling,pcImportDXF,pcClear,
pcCopyToClipBoard,pcCutToClipBoard,pcPasteFromClipBoard,
pcGetLayerNbr,pcFindFigureByName,pcLine,pcVertex,pcPolyLine,
pcvbPolyLine,pcEllipse,pcCircle,pcArc,pcRectangle,
pcInsertBitmap,pcInsertWMF,pcTextOut,pcRunMacro,pcPrintPreview,
pcCountBlock,pcGetSelectionHandles,pcGetSelectionHandle,
pcShowPropertyWindow,pcExecuteCommand,pcExecuteTBCommand

101

13 More Customization: Making Custom Figures
You already know what a figure is in PowerCad. It is the basic element of

a drawing such as line, rectangle, circle, etc. Blocks are a solution if you want to
provide your user something more than a basic figure, but what about providing
something more than a “block”. Yes, in this chapter we will see how to implemet
a custom figure which has its own custom behaviours defined by you according to
the needs of your application.

A custom figure will behave just like native basic figures as line, circle, etc.
You should only write its specific class code inheriting from TFigure of other
figure classes. There are some methods that you should override and reimplement.

13.1 Basic Concepts of Custom Figure Developing
Base Class: The TFigure
class which all figures are
inherited from.

Based Class: The class
from which a figure is
inherited. It may be
TFigure or a figure class
inherited from this.

Custom Figure: A Figure Class which is inherited from TFigure or
a figure class inherited from this.
Modification Points: The points that are drawen when the figure is selected. The
figure is reshaped (modified) from these points.
Figure Guides: The guides that are drawn with a figure such as the center mark
of a circle. They are drawen to the screen but not printed to the printer.
Figure Bounds: The bounding rectangle of a figure.
Figure Shadow: The temprorary figure that is drawn on the editor when the user
determines the figure locations.
Modification Shadow: The temproray figure that is drawn on the editor when
the user modifies the figure.

13.2 The Virtual Methods of TFigure
When you make a new figure class inherited from TFigure or anyother

Figure classes, you should reimplement some methods according to the needs of
the new figure. Below is a list of these methods.

Constructor create(LHandle:LongInt; aDrawStyle: TDrawStyle;
 aOwner: TComponent);

TFigure class and each figureclasses inherited from this, has its own constructor.
The base class constructor TFigure.Create creates the figure and initialize the
LayerHandle, DrawStyle,Owner properties using the constructor parameters. If
your figure needs some more parameters in the Create procedure, such as
location or a length, you should write your own constructor.

Procedure Initialize;override;
This method is called in the constructor, and it is used to assign the default
values of some parameters like PointCount. If your figure needs specific

Creation Shadow Modification Shadow

102

initializing, you should override this method. Note that, this method is called just
after creating the figure. So if your figure doesnt need specific parameters in the
constructor, but needs some specific initializing like creating a bitmap or a list in
the figure creation, then don’t implement a constructor,just override this method
and write your initialization code.

Procedure draw(DEngine:TPCDrawEngine;isFlue:Boolean);override;
This method draws the figure by using the rawEngine provided in the
parameters. If your figure will be drawn in its own style, this means if you inherit
it From TFigure, then you should reimplement this method. There are two
parameters of the draw procedure. DEngine is used to send the drawing
commands to the active canvas, and if the isFlue parameter is true, the drawing
color will be clGray.

Function IsPointIn(x,y:integer): boolean;override;
This method should return true if the given point is in the drawing area of the
figure, so that PowerCad will decide to select it when the user clicks on the
editor. If your figure has a different drawing area then the based figure, you
should reimplement this method.

Function Duplicate:TFigure; override;
This method should duplicate the figure and return the new figure, so that
Powercad will be able to multiply the figure in commands such as copying or
arraying. In any case you make an inheritende you should override and
reimplement this method.

Procedure DrawFigureGuides(DEngine: TPCDrawEngine);override
This method should draw the figure guides that are drawn on the screen but not
printed. If your figure needs to show a specific location on itself for guiding
purposes (such as the center of the circle), you should reimplement this method.
Draw the guides in a different color then the color of the figure.

Procedure GetModPoints(ModList: TList);override;
This method registers the modification points of the figure to the owner
PowerCad. These modification points are type of TModPoint, and by using
RegisterModPoint method of PowerCad you register your modification (selection)
points with their types,coordinates,shapes and colors.
Function RegisterModPoint(Figure: TFigure;
PType:TModPointType;
 DType: TPointType; Color: Tcolor;
 aDim,X,Y,seqNbr: integer):TModPoint;
The RegisterModPoint method creates a modification point and returns it so that
you can add these points to the ModList given in the procedure parameters.

procedure GetBounds(var figMaxX,figMaxY,figMinX,figMinY:
 integer);override;
This method should calculate its bounding rectangle and set the coordinates to
the given parameters. If the bounding rectangle of your figure can be different
then it was in the base class you should override and reimplement this method.

Procedure Move(deltax, deltay: integer); override;
Procedure Rotate(aAngle: integer; cPoint: TPoint); override;
Procedure Mirror(Point1,Point2: TPoint); override;

103

Procedure Scale(percentx,percenty: integer; rPoint: Tpoint);

override;
These methods do the transformations based on the points of the figure. So if
your figuire can be transformed by its poinst , (normally most figures can be
transformed by its figures) you shouldn’t override and reimplement these
method. But if your figure should calculate something in these methods then
inherit thse methods and call the inherited method at the beginning of the
implementation.

Procedure WriteToStream(Stream:TStream);override;
This method should write figure specific class data (fields or properties) to the
stream given in the parameters. Each field you should be written to the stream
with a field code prefix. The field code ranges change according to the type of
the field. Use the WriteField, WriteStrField, WriteBinField, WriteStreamField,
procedures defined in PCTypesUtils to write a field to the stream. Below is the
prototypes of these Stream Writing procedures thath you can use in the
implementation of this method.

Procedure WriteField(Code:Byte; Stream:TStream;
 Const Value;Size: integer);
Procedure WriteStrField(Code:Byte;Stream:TStream;
 Const Value:String);
Procedure WriteBinField(Code:Byte; Stream:TStream;
 Const Value:pByte; Size: integer);

Procedure WriteStreamField(Code:Byte; Stream:TStream;
 Const Value:TStream);
For writing numbers to the stream use WriteField, for string fields use
WriteStrField, for binary data use WriteBinField, for stream fields use
WriteStreamField.
When these proceudres writes your field values to the stream it uses an XML
like format, first it writes a label (field code) for the field then the data. This label
is determined by your code, however it should be in the range of the field-type
as given below. Because the size information is gathered from the field code in
the stream. Below is a list of field code ranges.
20-89 : Integer numbers
90-119 : Byte Numbers
120-149: Word Numbers
150-179: Binary Data
180-219: String Data
220-239: Double Numbers

Procedure SetPropertyFromStream(xCode:Byte;data:pointer;
 size:integer); override;
When a drawing is opend from a file, if PowerCad locates your figure in the file
and if your figure class have written specific data to the stream, then for each
field data this procedure of your class is called. You should look at the field code
given in the xCode parameter, and assign the value to its field in you class data.

Class Function ShadowType:TShadowType;override;
Class Function CreateShadow(x,y:integer): TFigure;override;
For standart shadows override ShadowType, for custom shadows override
CreateShadow fucntion. If you inherit form TFigure you should either override
ShadowType or CreateShadow. If you inherit from an existing figure class then you

104

should decide if you will use the existing shadow or not. If you use the existing
shadow you shouldn’t override these functions. But if you want to use a
different shadow then the existing one, for standart shadows (Rectangle, Circle,
etc.) override ShadowType function, for custom shadows override CreateShadow
fucntion.

class function CreateFromShadow(aOwner: TComponent;
 LHandle:LongInt;Shadow:TFigure): TFigure;override;
After the shadow ends, powercad sends the shadow to the figure class to make it
create the real figure. In anyway you must override and reimplement this calss
function. According the sizes of the passed Shadow figure , create a figure from
type of you figure class and return it.

Function ShadowClick(ClickIndex,x,y: integer):Boolean;
override;
Function ShadowTrace(ClickIndex,x,y: integer):Boolean;
override;
In case of custom shadows, these fucntions should be reimplemented as
CreateShadow method. The ShadowClick method is called in each click of the user
when the shadow is active, refresh you shadow values according to the locations
given in x,y. Return true if this click should be last click so that the shadow will
end and CreateFromShadow will be called. The ShadowTrace is called in case of
mouse moves when the shadow is active.

Function CreateModification: TFigure;override;
Function TraceModification(CadControl:Pointer; mp:TModPoint;
 TraceFigure:TFigure; x,y:integer;
Shift:TShiftState):boolean;
 override;
Function EndModification(CadControl: Pointer; mp:TModPoint;
 TraceFigure:TFigure; x,y:integer;
Shift:TShiftState):boolean;
override;

When user modifies the figure by moving the modification points, a
modification shadow is created. If your figure creates the shadow itself then it
should also create a modification shadow in CreateModification. The
TraceModification is called when the mouse moves and modification shadow is
active. The EndModification is called when the user drops the mousemoving. The
mp parameter is these fucntions is the dragged modification point, so that
according to this point you should make the modification on the figure.

Procedure RegisterToPropertyPage;override;
Procedure RefreshPropertyPage;override;
Procedure FigurePropertyChanged(PropertyName: string;
 Data:PPropData);override;
You should override these methods if you want your figure in
the ObjectInspector.

13.3 Inheriting Custom figures from Existing Figures

If you want to extend the ability of a current figure, inherit a new figure
class from its class. In this section we will inherit a new figure from TRectangle.

105

Assume that we want to have frames in our drawings, so we want to provide our
users a tool for drawing frames. Now, we will see how to reimplement a figure
from an exisitng figure step by step.

Step 1: Create a new unit for your custom figures, name it as MyFigures.Pas, and
write its uses clause as to include PCTypesUtils, DrawEngine, DrawObjects,
ObjectsandProps, ObjectIns, PCDrawing units of PowerCad package. Listing1
shows the unit with its uses clause.

Listing 1 – MyFigures unit with its uses clause.
unit MyFigures;

interface

uses
SysUtils, WinTypes, WinProcs, Messages,Classes, Controls,
Forms, Dialogs, ExtCtrls,comctrls,buttons,stdctrls,windows,
math,Graphics,PCTypesUtils, DrawEngine, DrawObjects,
ObjectsandProps, ObjectIns, PCDrawing;

implementation

end.

Step 2: To have a Frame tool, we will inherit a new class from TRectangle. And
our figure will behave just like Rectangle instead it will draw an inner rectangle in
the draw method of the figure. So we know that we should override the draw
method. Listing 2 shows the interface of the TFrame class.

Listing 2 – The interface of the TFrame class
TFrame = class(TRectangle)
procedure draw(DEngine:TPCDrawEngine; isFlue:Boolean);

override;
end;

Step 3: Now we will reimplement the draw method. We know that the orginal
draw method which is in TRectangle class, draws a rectangle by combining the
points of the figure. If the angle of the rectangle is 0, then calculating the
coordinates of the inner rectangle to form a frame is easy, but we know that a
rectangle can be in any angle so we must use a genaral way to calculate the
coordinates of the inner rectangle. For this puprpose we will use the
GetRelativePointBySclae fucntion which is in PCTypesUtils unit. Listing 3 shows
the implementation of the draw procedure.

Listing 3 – Reimplementation of Draw method
procedure TFrame.draw(DEngine: TPCDrawEngine; isFlue: Boolean);
var
 acolor,bcolor : Tcolor;
 points : array [0..3] of TPoint;
 ap1,ap2,ap3,ap4,cp: TPoint;
begin
inherited;

 acolor := color;
 bColor := brc;

106

if (isFlue) then
begin
acolor := flueColor;

 bcolor := flueColor;
end;

if DrawStyle = dsTrace then
 DEngine.Canvas.Pen.Mode := pmXor
else

 DEngine.Canvas.Pen.Mode := pmCopy;

 ap1 := actualpoints[1];
 ap2 := actualpoints[2];
 ap3 := actualpoints[3];
 ap4 := actualpoints[4];

// Find the center of the rectangle
 cp := Point((ap1.x+ap3.x) div 2,(ap1.y+ap3.y) div 2);

//Scale the points according to the center
 points[0] := GetRelativePointByScale(90,90,cp,ap1);
 points[1] := GetRelativePointByScale(90,90,cp,ap2);
 points[2] := GetRelativePointByScale(90,90,cp,ap3);
 points[3] := GetRelativePointByScale(90,90,cp,ap4);

//Draw the inner Rect
 DEngine.drawpolygon(points,4,acolor,width,style,
 bcolor,brs,RegHandle);

end;

Step 4: Now our TFrame figure is ready. If you create it through code by using its
constructor, and if you add it to the figures list it will work. But we want more
that we will create this figure by clicking on the PowerCad editor after we have
selected the assigned button for this figure. Yes in this case, powercad should be
aware of this class and in a way the CurrentFigure property should be set to
“TFrame” when we want to draw this figure. But before registering this figure to
PowerCad there is one more case that we should implement.

Each figure drawen on the Powercad editor provides a shadow which traces by
the mouse clicks or mouse movements, to form the figure or to modify the figure.
For example; when you want to draw a Rectangle, you click on two different
locations on the editor after you select the Rectangle tool. When you first click a
shadow figure for the drawing is created and up to our second click the shadow is
redrawn according to the new location of the mouse cursor. In fact, this shadow is
provided by the figure class itself. Since we have inherited this class from
TRectangle, we know that the TRectangle class will provide a shadow, but we still
should implement a method for the end of the shadow. This means when user
fnishes defining the locations, the shadow figure is sent to the figure class’
CreateFromShadow fucntion to create the figure. So if we don’t override this
method, even the CurrentFigure is assigned ‘TFrame’, a Rectangle (not a Frame)
will be created after the shadow ends. Listing 4 shows the interface and
implementation of the CreateFromShadow class fucntion.

Listing 4- CreateFromShadow Method
TFrame = class(TRectangle)
procedure draw(DEngine: TPCDrawEngine;isFlue:Boolean);

107

override;
class function CreateFromShadow(aOwner: TComponent;

 LHandle: Integer; Shadow: TFigure): TFigure;override;
end;
class function TFrame.CreateFromShadow(aOwner: TComponent;
 LHandle: Integer; Shadow: TFigure): TFigure;
var cad: TPCDrawing;
begin
 cad := TPCDrawing(aOwner);
 Result := TFrame.create(Shadow.actualPoints[1].x,
 Shadow.actualPoints[1].y,
 Shadow.actualPoints[3].x,
 Shadow.actualPoints[3].y,

cad.DefaultPenWidth,
 ord(cad.DefaultPenStyle),
 cad.DefaultPenColor,
 ord(cad.DefaultBrushStyle),
 cad.DefaultBrushColor,
 LHandle,
 dsNormal,aOwner);
end;

Step 5: Each figure class registered to PowerCad should have a duplicate method
which is used to copy figures. If we dont override this method, PowerCad will
create Rectangle when the user copies or multiplies the Frame figure. Listing 5
shows the interface and implementation of the Duplicate fucntion.

Listing 5- Duplicate Method
TFrame = class(TRectangle)
 ...
Function Duplicate:TFigure; override;

end;
Function TFrame.Duplicate: TFigure;
begin
 Result := TFrame.create(0,0,0,0,
 width,style,color,
 brs,brc,
 LayerHandle,
 DrawStyle,Owner);
 Result.angle := angle;
 Result.actualpoints[1] := actualpoints[1];
 Result.actualpoints[2] := actualpoints[2];
 Result.actualpoints[3] := actualpoints[3];
 Result.actualpoints[4] := actualpoints[4];
 Result.originalpoints[1] := originalpoints[1];
 Result.originalpoints[2] := originalpoints[2];
 Result.originalpoints[3] := originalpoints[3];
 Result.originalpoints[4] := originalpoints[4];
 Result.rotatePoint.x := rotatePoint.x ;
 Result.rotatePoint.y := rotatePoint.y ;
end;

Step 6: Now our figure is ready to work, so we should register it to the
PowerCad control in which we want it. And we should provide a control (a
button or a menu) for setting the CurrentFigure property to ‘TFrame’.

In the OnCreate Event of your form register TFrame to the powercad as folows.

PowerCad1.RegisterFigureClass(TFrame);

108

Then in the onclick event of the menu or button you specified for TFrame, write
down this code.

PowerCad1.CurrentFigure := 'TFrame';
PowerCad1.ToolIdx := toFigure;

TFrame in action

13.4 Making a Brand New Figure
In this section, we will see how we can

implement figure classes by directly inheriting from the
base figure class, TFigure. So you can make your own
custom figures with more code and more fucntionality.
In this case you are not limited with the behaviours of
the exisitng figures, instead your figure will behave in the
way you code. So now, in this section we will try to
develope a 4-point star which you can see its picture on the left. It will have two
modifications point, one will be used to arrange the circle radius of the star, the
other will be used to arrange to convexity of the star.

The Geometry of Our “Star”

The location marked with c is the center of the
star, radius is the radius of the bounding
circle, the boundig rectangle of the star will
always be a square, the convexcity value will be
(d/radius)*100. When the convexity is 0 the
star will be a cross, when the convexity is 100
the star will be a square. By default convexity
will be 25. So d value will be ¼ of the radius.

109

The Figure Data
Actually the Tfigure has standart and basic fields of a figure. Our star will

be some more of these. We know that we should use the ActualPoints, Width,
Color, Style, Brs, Brc and Radius properties of TFigure, in addition to these we
will add a new field named cValue for the Convexsity value.

cValue: Integer;

The Constructor
We will override the base constructor, because we need some parameters

to form the star at the beginning. These are the center of the star, the pen width,
pen style,pen color, brush style and brush color of our star.

Constructor Create(cX,cY,rad,w,s,c,abrs,abrc:integer;
 LHandle:LongInt; aDrawStyle:
 TDrawStyle;aOwner: TComponent);

The Initializer
We will override the Initialize method because we will initialize some

fields here. The pointcount field should be initialized here because PowerCad need
the pointcount of the figure for memory operations. Our pointcount will be 1,
because we will only store the center coordinates in the actualpoints array.

Procedure Initialize;override;

Listing 1 shows the interface and implementation of our figure up to this point.

Listing 1 – First Step of TStar Class Implementation
TStar = class(TFigure)
 cValue: Integer;
constructor create(cX,cY,rad,w,s,c,abrs,abrc:integer;

 LHandle:LongInt; aDrawStyle:
 TDrawStyle;aOwner: TComponent);
procedure Initialize;override;

end;
constructor TStar.create(cX, cY, rad, w, s, c, abrs, abrc,
 LHandle: Integer;aDrawStyle:TDrawStyle;aOwner: TComponent);
begin
inherited create(LHandle,aDrawStyle,aOwner);

 Initialize;
 originalpoints[1] := Point(cx,cy);
 actualpoints[1] := Point(cx,cy);
 radius := rad;
 width := w;
 color := c;
 style := s;
 brs := abrs;
 brc := abrc;
end;

procedure TStar.Initialize;
begin
 pointcount := 1;
 cValue := 25;
end;

110

The Shadow Decision
We should decide what type of a shadow we will use. We know that we can use
the standart shadows or we can create oir own shadow. We will first use the
standart circle shadow and look how figure behaves , later in this section we will
create our own shadow. So in this step, we will just implement the ShadowType
and CreateFromShadow methods. Since we use a circular shadow, the user will
draw a circle on the editor, then we will create our star figure from this shadow
circle.

Listing 2 – The Shadow Behaviour of TStar
TStar = class(TFigure)
 ...
class function ShadowType:TShadowType;override;
class function CreateFromShadow(aOwner: TComponent;

 LHandle:LongInt;
 Shadow:TFigure): TFigure;override;
end;

class function TStar.ShadowType: TShadowType;
begin
 result := stCircle;
end;

class function TStar.CreateFromShadow(aOwner: TComponent;
LHandle: Integer;
 Shadow: TFigure): TFigure;
var cad: TPCDrawing;
begin
 cad := TPCDrawing(aOwner);
 Result :=
TStar.create(Shadow.actualPoints[1].x,Shadow.actualPoints[1].y,
 TCircle(shadow).radius,
 cad.DefaultPenWidth,

 ord(cad.DefaultPenStyle),
 cad.DefaultPenColor,
 ord(cad.DefaultBrushStyle),
 cad.DefaultBrushColor,
 LHandle,
 dsNormal,aOwner);
end;

Drawing The Star

By using the star geometric principles we will draw our start to the given draw
engine. So at the end , we will draw a polygon which all points are calculated as to
form a four point star. In this step we will override the Draw procedure, but
there are some basic things that we should be aware of when drawing our figure.
if the DrawStyle parameter is dsTrace then our pen mode will be pmXor, and our
pen color will be clLime. If the isFlue parameter is true, the our pen color will be
flueColor. See Listing 3 for mathematical details of the drawing.

Listing 3 – Draw Method
TStar = class(TFigure)
 ...
procedure draw(DEngine: TPCDrawEngine;

111

 isFlue:Boolean);override;
end;
procedure TStar.draw(DEngine: TPCDrawEngine; isFlue: Boolean);
var
 acolor,bcolor : Tcolor;
 cp: TPoint;
 points: array[0..7] of TPoint;
 d: integer;
begin
 acolor := color;
 bColor := brc;

if (isFlue) then
begin

 acolor := flueColor;
 bcolor := flueColor;
end;

 cp := actualpoints[1];
 d := round((cValue/100)*radius);

if DrawStyle = dsTrace then
 DEngine.canvas.pen.mode := pmXor
else

 DEngine.canvas.pen.mode := pmCopy;

 Points[0] := Point(cp.x-radius,cp.y);
 Points[1] := Point(cp.x-d,cp.y+d);
 Points[2] := Point(cp.x,cp.y+radius);
 Points[3] := Point(cp.x+d,cp.y+d);
 Points[4] := Point(cp.x+radius,cp.y);
 Points[5] := Point(cp.x+d,cp.y-d);
 Points[6] := Point(cp.x,cp.y-radius);
 Points[7] := Point(cp.x-d,cp.y-d);
 DEngine.drawpolygon(points,8,acolor,width,style,
 bcolor,brs,RegHandle);
end;

Selecting The Star

When the user clicks on the editor with select tool, PowerCad checks if the
clicked location is in any figure. So IspointIn method of each figure is called. And
incase user draws rectangle to make a selection, Powercad will need the bounding
rectangle of our figure. Also about the selection case , there is one more method
GetModPoints. By this method,the modification points are registered to
Powercad. These points will be drawn when the figure is selected. Normally since
we use an stCircle shadow type, by default, even we don’t override these methods
our figure will behave as circle.

Actually, the bounding rectangle of our figure is equal to the bounding rectangle
of our shadow, so it seems that there is no need to override the GetBounds
method. But if the convexity of the star is biggr then 100, the star will be concave
star and the bounding rectangle will exceed the bounding circle. So we should
overrode the GetBoundMethod.

Since we use a standart shadow we shouldn’t override the GetModPoints method
also. Because the base class will register 4 circle modification points which the

112

user can arrange the radius of our figure. But in the following sections when we
make our own shadow we will also override this method.

Since the drawing area of our star is different then the circle shadow we should
override the IsPointIn function. Because we should make our own calculation if
the point is on our figure or not.

Listing 4 shows the implementation of IsPointIn and GetBounds methods with
their interface.

Listing 4 – IsPointIn Method
TStar = class(TFigure)
 ...
function isPointIn(x,y: integer): boolean;override;

 Procedure Getbounds(var figMaxX,figMaxY,figMinX,figMinY:
 integer);override;

end;
function TStar.isPointIn(x, y: integer): boolean;
var cp: TPoint;
 points: array[1..8] of TPoint;
 d,i,idx1,idx2: integer;
begin
if (TBrushStyle(brs) <> bsClear) then
begin

 result := IsPointInRegion(x,y);
end else
begin

 cp := actualpoints[1];
 d := round((cValue/100)*radius);

 Points[1] := Point(cp.x-radius,cp.y);
 Points[2] := Point(cp.x-d,cp.y+d);
 Points[3] := Point(cp.x,cp.y+radius);
 Points[4] := Point(cp.x+d,cp.y+d);
 Points[5] := Point(cp.x+radius,cp.y);
 Points[6] := Point(cp.x+d,cp.y-d);
 Points[7] := Point(cp.x,cp.y-radius);
 Points[8] := Point(cp.x-d,cp.y-d);

for i := 1 to 8 do
begin

 idx1 := i;
if i = 8 then idx2 := 1 else idx2 := i+1;
if ispointinLine(points[idx1],points[idx2],Point(x,y))
then result := true;

end;
end;

end;

procedure TStar.GetBounds(var figMaxX, figMaxY, figMinX,
 figMinY: integer);
var cp : TPoint;
 d,dist:integer;
begin
 cp := actualpoints[1];
 d := round((cValue/100)*radius);
if cValue <= 100 then dist := radius else dist := d;

 figMaxX := cp.x+dist;
 figMinX := cp.x-dist;
 figMaxY := cp.y+dist;

113

 figMinY := cp.y-dist;
end;

Duplicating the Star

We should override the Duplicate method in any case, if you don’t reimplement
this method you figure will not be multiplied in copy or array operations. In the
implementation of this method create a figure from you class with the current
field values. Listing 5 shows the implementation of Duplicate method with its
interface.

Listing 5 – Duplicate Method
TStar = class(TFigure)
 ...
function duplicate:TFigure; override;

end;
function TStar.duplicate: TFigure;
begin
 result := TStar.create(actualpoints[1].x,
 actualpoints[1].y,
 radius,
 width,
 style,
 color,
 brs,
 brc,
 LayerHandle,
 drawstyle,Owner);
 TStar(result).cValue := cValue;
end;

Streaming Methods

If our figure has some specific data which is not streamed by base class, the we
should handle two methods for streaming. Otherwise our figure will saved to the
file with some missing fields. For streaming, WriteToStreeam and
SetPropertyFromStream methods will be reimplemented. See Listing 6 for the
implementation of the streaming methods with their interfaces. Note that you
should always call the inherited in WriteToStream, and never call inherited in
SetPropertyFromStream.

Listing 6 – Streaming Methods
TStar = class(TFigure)
 ...
Procedure WriteToStream(Stream:TStream);override;
Procedure SetPropertyFromStream(xCode:Byte;data:pointer;

 size:integer); override;
end;
procedure TStar.WriteToStream(Stream: TStream);
var xByte:Byte;
 xInt:Integer;
begin
inherited;

 xByte := brs; WriteField(90,Stream,xByte,1);
 xInt := brc; WriteField(20,Stream,xInt,4);
 xInt := Radius; WriteField(21,Stream,xInt,4);
 xInt := cValue; WriteField(22,Stream,xInt,4);

114

end;

procedure TStar.SetPropertyFromStream(xCode: Byte; data:
pointer;
 size: integer);
begin

Case xcode of
 20: brc := pInt(data)^;
 21: Radius := pInt(data)^;
 90: brs := pByte(data)^;
 22: cValue := pInt(data)^;

end;
end;

Registering to Object Inspector

If you want your figure to be show in the Object Inspector when it is selected,
you should override 3 methods. RegisterToPropertyPage, RefreshPropertypage
and FigurePropertyChanged methods will provide you figure field data to be
edited in the ObjectInspector. In the RegisterToPropertyPgae method you will
register your figure to the ObjectInspector and create properties for each field
that you want to see in the InsPector. In the RefreshPropertyPage you will
reassign the property values of your fields. And finally FigurePropertyChanged
method will be called whenany field is edited in the ObjectInspector so in this
method you should assign the property value to your field data. Listing 7 will
show the implementations of these methods with their interfaces.

Listing 7 – Registering To ObjectInspector
TStar = class(TFigure)
 ...
Procedure RegisterToPropertyPage;override;
Procedure RefreshPropertyPage;override;
Procedure FigurePropertyChanged(PropertyName: string; Data:

PPropData);override;
end;
procedure TStar.RegisterToPropertyPage;
var fPPage: TObjectInspector;
 a: integer;
begin
if owner <> nil then begin

 fPPage := TPCDrawing(owner).fPPage;
 fPpObject := fPPage.registerObject(name,'Star',self);
 fPpObject.ChangeEvent := FigurePropertyChanged;
 props[1] := TStringProperty.create('Name',false,name);
 props[2] := TIntegerProperty.create('Handle',true,Handle);
 props[3] := TLineStyleProperty.create('PenStyle',false,
 style);
 props[4] := TLineWidthProperty.create('PenWidth',false,

 width);
 props[5] := TColorProperty.create('PenColor',false,Color);
 props[6] := TBrushStyleProperty.create('BrushStyle',false,
 brs);
 props[7] := TColorProperty.create('BrushColor',false,brc);
 props[8] := TIntegerProperty.create('Radius',false,radius);
 props[9] := TIntegerProperty.create('Convexity',false,
 cValue);

for a := 1 to 9 do fPpObject.AddProperty(props[a]);
end;

115

end;

procedure TStar.RefreshPropertyPage;
begin
if fPpObject <> nil then begin

 props[1].Data.ValString := Name;
 props[2].Data.ValInteger := Handle;
 props[3].Data.ValByte := Style;
 props[4].Data.ValByte := Width;
 props[5].Data.ValInteger := Color;
 props[6].Data.ValByte := brs;
 props[7].Data.ValInteger := brc;
 props[8].Data.ValInteger := Radius;
 props[9].Data.ValInteger := cValue;
end;

end;

procedure TStar.FigurePropertyChanged(PropertyName: string;
 Data: PPropData);
begin
if PropertyName = 'Name' then begin

 Name := Data.ValString;
 fPpObject.Name := Name;
end
else if PropertyName = 'PenStyle' then

 style := Data.ValByte
else if PropertyName = 'PenWidth' then

 width := Data.ValByte
else if PropertyName = 'PenColor' then

 color := Data.ValInteger
else if PropertyName = 'BrushStyle' then

 brs := Data.ValByte
else if PropertyName = 'BrushColor' then

 brc := Data.ValInteger
else if PropertyName = 'Radius' then

 radius := Data.ValInteger
else if PropertyName = 'Convexity' then

 cvalue := Data.ValInteger;
 TPCDrawing(owner).fPPage.ObjectChangedEvent(name);
if assigned(TPCDrawing(Owner).OnPropertyChanged) then

 TPCDrawing(Owner).OnPropertyChanged(Self,PropertyName,Data);
end;

Star in Action

Our Figure is ready to work. We have overridden few methods and we have
produced a stand alone functionalty. To make this figure work in Powercad in the
OnCreate event code of your main application form write this code to register
the Figure Class.

PowerCad1.RegisterFigureClass(TStar);

Then in the onclick event of the menu or button you specified for TStar, write
down this code.

PowerCad1.CurrentFigure := 'TStar';
PowerCad1.ToolIdx := toFigure;

Now you can feel TStar in action.

116

Drawing Star Selected Star Modifying Star

Same radiuses, different convexities of stars

Using Custom Shadow

As it is done above, we have used a standart circular shadow for TStar. So the
shadow functionality of our figure has behaved like circle. Now the we will create
our own shadow and our shadow will behave like the figure. Now we will see
creating a custom shadow step by step.

Step 1: Implementing The Figure Shadow

We should override the Shadow methods, because we want our own figure (star)
to be drawn when the shadow is active, not a circle. So we should override 3
methods for having a custom shadow. The first is the createShadow method
which will be used to retun a shadow to Powercad, the other will be ShadowClick
method which will be called in each click of the user when the shadow is active.
And the last is ShadowTrace which will be called when mousemoves, so that we
will reshape the shadow before creating the figure.

In the CreateShadow method, we will create our own figure. Note that only the
fist location is given in this method, we will assume it as
center of the star, and the starting radius of the star will
0.

Secondly, we will implemet the ShadowClick, method.
Since we need two clicks to form a star, we should
return a true value, if the clickindex is 2. The first click
will be handled in the CreateShadow method and it will
be the center, the second click will be handled in

117

ShadowClick method. So we will calculate the radius of the star by this click and
end the shadow by returning a true result.

Also we should reshape the shadaow between the clicks, when the user moves the
mouse, so that he will see the shape of the star before selecting the final location
for his click.For this purpose we will reimplement the ShadowTrace method.
Since we need only two clicks, this method will be called between the first click
and the second click. On the right picture, you can see our custom shadow in
action.

See Listing 8 for the implementation of Shadow Methods.

Listing 8 – The Shadow Methods
TStar = class(TFigure)
 ...
Class Function CreateShadow(x, y: integer): TFigure;override;

 function ShadowClick(ClickIndex, x, y: integer): Boolean;
override;

 function ShadowTrace(ClickIndex, x, y: integer): Boolean;
override;

end;

class function TStar.CreateShadow(x, y: integer): TFigure;
begin
 result := TStar.Create(x,y,0,1,1,clLime,1,clWhite,0,dsTrace,

nil);
end;

function TStar.ShadowClick(ClickIndex, x, y: integer): Boolean;
begin
if clickindex = 2 then result := true else result := false;

 radius := round(sqrt(sqr(x - actualPoints[1].x)+
 sqr (y - actualPoints[1].y)));
end;

function TStar.ShadowTrace(ClickIndex, x, y: integer): Boolean;
begin
 radius := round(sqrt(sqr(x - actualPoints[1].x)+

 sqr (y - actualPoints[1].y)));
end;

Step 2 : Implementing the Modification Shadow

In this step, we will also provide our
custom shadow in the modification
of the star. But first we should
decide, what kind of modifications
we will provide to the user, so we
should create modifivcation points
for these purposes. In this Star
example, we can provide to
modifications, one is the radius of the star, the other is the convexity value of the
star. So let us create 3 points for the modification of the radius, on the
top,bottom, and right tip of the star. and one point for the modification of the

118

cValue to the location which is d (look at the “Geometry Of Our Star” title in this
section for d value) to the center. As we have seen before , the Modification
points will be registred in GetModPoints method. The sequence number for the
radius points will be 0, and for the convexity point will be 1. So that we will
distinguish which point the user is moving. On the upper figure, the first picture
shows modificationof the radius, the second one shows modification of the
convexity.

See Listing 9 for the implementation of GetModPoints.

Listing 9- GetModPoints Method
TStar = class(TFigure)
 ...
procedure GetModPoints(ModList: TList);override;

end;

procedure TStar.getModPoints(ModList: TList);
var CControl : TPCDrawing;
 cp: TPoint;
 d: integer;
begin
 CControl := TPCDrawing(Owner);
 cp := actualpoints[1];
 d := round((cValue/100)*radius);
// There modification point for radius arrangment

 ModList.Add(CControl.RegisterModPoint(self,ptCirclePoint,
 ptRect,clBlue,pointdim,cp.x,cp.y + radius,0));
 ModList.Add(CControl.RegisterModPoint(self,ptCirclePoint,
 ptRect,clBlue,pointdim,cp.x,cp.y - radius,0));
 ModList.Add(CControl.RegisterModPoint(self,ptCirclePoint,
 ptRect,clBlue,pointdim,cp.x+radius,cp.y,0));
// One modification point for Convexity arrangement

 ModList.Add(CControl.RegisterModPoint(self,ptCirclePoint,
 ptCircle,clBlue,pointdim,cp.x-d,cp.y,1));
end;

And for the Shadow Creation of the modification, we will override 3 methods.
CreateModification will be used for creating the shadow, TraceModification will be used
to reshape the shadow when the modification is active and EndModification will be
used for applying the changes to our real figure.

See Listing 10 for the implementation of these methods with their interfaces.

Listing 10 - Modification Methods
TStar = class(TFigure)
 ...
function CreateModification: TFigure;override;

 function TraceModification(CadControl: Pointer;mp:TModPoint;
 TraceFigure:TFigure;x,y:integer;Shift:
 TShiftState):boolean;override;
function EndModification(CadControl: Pointer;mp:TModPoint;

 TraceFigure:TFigure;x,y:integer;Shift:
 TShiftState):boolean;override;
end;

function TStar.CreateModification: TFigure;

119

begin
 result := TStar.create(actualpoints[1].x,actualpoints[1].y,
 Radius,1,1,clLime,1,clWhite,0,dsTrace,nil);
 TStar(result).cvalue := cValue;
end;

function TStar.TraceModification(CadControl: Pointer; mp:
 TModPoint;TraceFigure: TFigure; x, y: integer; Shift:
 TShiftState): boolean;
var cp: Tpoint;
begin

if mp.SeqNbr = 0 then
begin

 TStar(TraceFigure).Radius :=
 round(sqrt(sqr(x - TraceFigure.actualPoints[1].x)+
 sqr(y - TraceFigure.actualPoints[1].y)));

end else begin
 cp := TraceFigure.ActualPoints[1];

if x > cp.x then x := cp.x;
 TStar(TraceFigure).cValue := round(((cp.x-x)/radius)*100)

end;
end;

function TStar.EndModification(CadControl: Pointer; mp:
 TModPoint;TraceFigure: TFigure; x, y: integer; Shift:
 TShiftState): boolean;
begin
 Radius := TStar(TraceFigure).Radius;
 cValue := TStar(TraceFigure).cValue;
 ResetRegion;
 Modified := True;
end;

Let Us Do Something More With Our Star

In this section, we will apply some more functionality to our figure. PowerCad
custom figure interface provides developers some more features like double-click
editing and pop-up menu.

When the user double clicks the figure ,
PowerCad calls the Edit method of the figure.
If you have overridden this method, then your
code in this method will work. In this method
you can provide prompting forms for the user
to enter some values for editing your figure. So
we will reimplement the Edit method, and in
this method we will prompt an Input Form to
take the Convexity value from the user. If the
user changes the current value then we should
returna true value to Invoke powercad to
refresh the drawing.

When the user right clicks on the editor, a pop-up
menu is shown. In this menu, PowerCad provides
some shortcuts to do general ections. If you override
the UpdateMenu method , PowerCad can provide
your figure specific menu items to do specific actions.

120

We will reimplemet this method with the MenuClicked procedure, to provide user
a shortcut for setting the convexity to its default value. If you override the
UpdateMenu method, then you should also override the MenuClicked method
which is called when the user clicks on the pop-up menu.

Listing 11 Shows the implementation of the Edit and UpdateMenu methods with
their interfaces.

Listing 11 – Edit and UpdateMenu Methods
TStar = class(TFigure)
 ...
Function Edit:Boolean;override;
Procedure UpdateMenu(var PopMenu: TPopUpMenu;var sIndex:

 integer);override;
Procedure MenuClicked(CommandId:integer);override;

end;
Function TStar.Edit: Boolean;
var res: string;
 val: integer;
begin
 res := InputBox('Edit Star',
 'Enter The New Convexity Value',
 inttostr(cvalue));
if res <> inttostr(cvalue) then
begin

 val := strtointdef(res,cValue);
if (val <> cvalue) then
begin

 cValue := Val;
 result := true;
 ResetRegion;
 Modified := true;

end;
end;

end;

procedure TStar.UpdateMenu(var PopMenu: TPopUpMenu; var sIndex:
 integer);

var mnItem: TMenuItem;
begin
 menuIndex:= sIndex;
 mnItem := TMenuItem.Create(PopMenu);
 mnItem.Caption := 'Default Convexity';
 mnItem.Tag := sIndex;
 PopMenu.Items.Add(mnItem);
 sIndex := sIndex+1;
end;

procedure TStar.MenuClicked(CommandId: integer);
var idx: integer;
begin
 idx := commandID-menuIndex;
case idx of

 0: begin
 cValue := 25;
 ResetRegion;
 Modified := True;

end;
end;

end;

121

14 Component Reference
The Component Reference is published as a different document. Please
download it from Tekhnelogos official website www.tekhnelogos.com .

