Properties:

RulerVisible |Boolean

Use the RulerVisible property to control the visibility of the
rulers at runtime or design time. If RulerVisible is True, the
rulers appear. If RulerVisible is False, the rulers are not
visible.

Defined in PCPanel unit

PanelVisible Boolean

Use the PanelVisible property to control the visibility of the
bottom panel at runtime or design time. If PanelVisible is
True, the panel appears. If PanelVisible is False, the panel is
not visible.

Defined in PCPanel unit

RulerSystem |TRu1erSystem = (rsMetric, rsWhitworth)

Use the RulerSystem property to define the unit system of the
rulers. If RulerSystem is rsMetric, the ruler is drawn in
metric unit system. If RulerSystem is rsWhitworth, the ruler is
drawn in inch unit system. But note that, this doesn’t effect
the dimension unit used in the methods or commands. It 1is
always in dmm (deci milimeter) (10 dmm = 1 mm)

Defined in PCPanel unit

VerticalZero |TVertZero = (vzBottom,vzTop)

Use the VerticalZero property to define where the vertical
ruler start. This also defines in which direction the y wvalue
increases or decreases. If VerticalZero is vzBottom, the ruler
starts at the bottom of the page and increases to the top. If
VerticalZero is vzTop, the ruler starts at the top of the page
and increases to the bottom. All methods and commands are
affected from this property. Ex: A drawing which is drawn in
vzBottom will be vertically mirrored when reopened in a vzTop
control. So this property should be fixed for an application.

Defined in PCPanel unit

HorizontalZero |THorzZero = (vzLeft,vzRight)

Use the HorizontalZero property to define where the horizontal
ruler start. This also defines in which direction the x wvalue
increases or decreases. If HorizontalZero is vzLeft, the ruler
starts at the left of the page and increases to the right. If
HorizontalZero is vzRight, the ruler starts at the right of the
page and increases to the left. All methods and commands are
affected from this property. Ex: A drawing which is drawn in
vzRight will be horizontally mirrored when reopened in a vzLeft
control. So this property should be fixed for an application.

Defined in PCPanel unit

AutoRefresh |Boolean

Use the AutoRefresh property wheather the CadControl will
refresh when figures are added through method calls. If
Autorefresh is true then in each figure insertion PowerCad will
refresh the drawing, but if it is false then PowerCad will
refresh when the Refresh method is called. It is mostly used to
prevent screen flicker when adding too much figures.

//Example:

PowerCadl.AutoRefresh := False;

For i := 1 to 1000 do
Powercadl.Line(0,i,10,1,200,1,1,clBlack,0);

Powercadl .AutoRefresh := True;

PowerCadl.Refresh;

Defined in PCPanel unit

ToolIdx TPCTool = (toSelect, toZoom, toInsertBlock,
toInsertCurrentBlock, toFigure, toOperation)

Use the ToolIdx property to define the behaviour of the mouse
commands .

toSelect: the mouse click will select the clicked figure.
Ex : PowerCadl.ToolIdx := toSelect;

toZoom: the mouse clik will zoom the drawing.
Ex : PowerCadl.ToolIdx := toZoom;

toInsertBlock: the mouse click will insert the block that is
selected from the coming open dialog.
Ex : PowerCadl.ToolIdx := tolInsertBlock;

toInsertCurrentBlock: the mouse click will insert the block
that is assigned to the CurrentBlock property. (The path of the
block file should be assigned to the CurrentBlock property)

Ex :

PowerCadl.ToolIdx := toInsertCurrentBlock;
Powercadl.CurrentBlock := ‘c:\Blocks\Vane.pwb’;

toFigure: the mouse clicks draw the figure that is assigned to
the CurrentFigure property. (The class name should be assigned
to the CurrentFigure property)

Ex :
PowerCadl.ToolIdx := toFigure;
Powercadl.CurrentFigure := ‘TLine’;

toOperation: the mose clicks execute the operation (like
rotate, mirror, etc.) that is assigned to the CurentFigure.
(The class name should be assigned to the CurrentFigure
property)

Ex :
PowerCadl.ToolIdx := toOperation;
Powercadl.CurrentFigure := ‘TRotate’;

Defined in PCDrawBox unit

DotsPerMilOrig |Extended

Use the DotsPerMilOrig to define the pixel count of one mm when

the drawing is in original size (scale = 100). The value is 4
by default.
Ex: PowerCadl.DotsPerMilOrig := 8;

Defined in PCDrawBox unit

Surface TPaintBoxExt

Use the Surface property to access the paintbox class which the
drawing is painted on.

Ex:
with PowerCadl do
Forml.Canvas.CopyRect (DestRect, Surface.Canvas, SourceRect) ;

Defined in PCDrawBox unit

Scale | Integer

Use the Scale property to define the zoom factor of the
drawing. The scale property is based on percent calculation,
for actual size use 100, for half size use 50 and for double
size use 200, etc.

Ex: PowerCadl.Scale := 75;

Defined in PCDrawBox unit

GuidesVisible |Boolean

Use the GuidesVisible property to show or hide the guide lines
of the drawing.The guides are not printed.

Ex: PowerCadl.GuidesVisible := True;

Defined in PCDrawBox unit

BackGround | TColor

Use the BackGround property to define the background color of
the drawing page. The background color is not printed.

Ex: PowerCadl.BackGround := clWhite;

Defined in PCDrawBox unit

Grids |Boolean

Use the Grids property to show or hide the grids of the drawing
page. The grids are not printed.

Ex: PowerCadl.BackGround := clWhite;

Defined in PCDrawBox unit

GridColor |TColor

Use the GridColor property to define the grid color of the
drawing page.

Ex: PowerCadl.GridColor := clSilver;

Defined in PCDrawBox unit

GuideColor | TColor

Use the GuideColor property to define the color of the guide
lines.

Ex: PowerCadl.GuideColor := clGreen;

Defined in PCDrawBox unit

GridStep | Integer

Use the GridStep property to define the space between the
grids. The GridStep value is defined in dmm unit.

Ex: PowerCadl.GridStep := 50; // 5 mm

Defined in PCDrawBox unit

WorkHeight |Integer

Use the WorkHeight property to define the height of the drawing
page. The WorkHeight value is defined in dmm unit.

Ex: PowerCadl.WorkHeight := 2000; //20 cm

Defined in PCDrawBox unit

WorkWidth |Integer

Use the WorkWidth property to define the width of the drawing
page. The WorkWidth value is defined in dmm unit.

Ex: PowerCadl.WorkWidth := 2000; //20 cm

Defined in PCDrawBox unit

PageLayout TPagelLayOut = (plaAO, plAl, plA2, plA3,
plA4, plA5, plA6, plB4, plB5, plTabloid,
plletter, plCustom);

Use the Pagelayout property to define the layout of the drawing
page in technical standarts. The page layout also defines the
WorkWidth and WorkHeight properties.

Ex: PowerCadl.Pagelayout := plA4;

Defined in PCDrawBox unit

PageOrient TPageOrient = (polandscape , poPortrait);

Use the PageOrient property to define the orientation of the
drawing page.

Ex: PowerCadl.Pagelayout := polandscape;

Defined in PCDrawBox unit

GuideTrace TGuideTraces = (gtNone, gtNinty, gtThirty,
gtFortyFive, gtSixty);

Use the GuideTrace property to define the angle of the cursor
guides. To hide the CursorGuides use gtNone value.

Ex: PowerCadl.GuideTrace := gtNinty;

Defined in PCDrawBox unit

SnapToGuides |Boolean

Use the SnapToGuides property to snap the cursor to guide
lines.

Ex: PowerCadl.SnapToGuides := True;

Defined in PCDrawBox unit

SnapToGrids |Boolean

Use the SnapToGrids property to snap the cursor to grid lines.

Ex: PowerCadl.SnapToGrids := True;

Defined in PCDrawBox unit

SnapToNearPoint Boolean

Use the SnapToNearPoint property to snap the cursor to nearest
figure point. When this property is true, PowerCad also fires
the OnFigureSnap event to provide user custom snapping.

Ex: PowerCadl.SnapToNearPoint := True;

Defined in PCDrawBox unit

Scrollbars |Boolean

Use the Scrollbars property to show or hide the scrollbars of
the drawing editor.

Ex: PowerCadl.Scrollbars := True;

Defined in PCDrawBox unit

RealScale |Boolean

Use the RealScale property to define the interpretion of the
diemnsions given in the command bar. When RealScale is true,
the coordinates given in the command bar are considered as the
rel size of figure in cm, so they are converted to drawing page
coordinates before creating the figure by using the mapscale.

Ex: PowerCadl.RealScale := True;
PowerCadl.MapScale := 50;
PowerCadl.ExecuteCommand(‘Line 0,0,50,0");
// The Command means: Draw a horizontal line from 0,0 in 50
// cm length in real sizes. The map scale is 50 so 50 cm
// will be shown as 1 cm on the paper. And 1 cm is 100 dmm.
// So the line coordiantes on the paper will be 0,0,100,0

Defined in PCDrawing unit

DEngine TPCDrawEngine

Use the DEngine property to access the DrawEngine class of the
PowerCad. You can make custom calls to this class to make
drawings without creating figures.

Ex:PowerCadl.DEngine.drawtext (0,0,0,’Test’,xFont, 50, 0.8);

Defined in PCDrawing unit

Layers TList

Use the Layers property to access the list of the layer
classes.

Ex: Mylayer := TLayer (PowerCadl.Layers[0]);

Defined in PCDrawing unit

Figures TList

Use the Figures property to access the list of the figure
classes.

Ex:
For a := 0 to Powercadl.Figures.Count-1 do
begin
MyFigure := TFigure (Powercadl.Figureslal);
if myFigure is TBlock then inc(cnt);
end;
ShowMessage (' There are ‘' + inttostr(cnt) + " blocks’);

Defined in PCDrawing unit

FPPage |TObjectInspector

Use the FPPage property to access the Property Page (Object
Inspector) of the PowerCad.

Ex: Powercadl.FPPage.Show;

Defined in PCDrawing unit

CurrentFigure |String

Use the CurrentFigure property to define the figure which will
be drawn when the toolidx is toFigure, or to define which
operation will be held when the tooidx is toOperation.

Ex:

PowerCadl.ToolIdx := toFigure;
Powercadl.CurrentFigure := ‘TLine’;
// or

PowerCadl.ToolIdx := toOperation;
Powercadl.CurrentFigure := ‘TRotate’;

Defined in PCDrawing unit

CurrentBlock String

Use the CurrentBlock property to define the block which will be
inserted when the toolidx is toInsertCurrentBlock. So in this
way you can assign a specific block to a toolbar button or a
menu command.

procedure TForml.InsertVaneClick (Sender: TObject) ;

begin
PowerCadl.ToolIdx := toInsertCurrentBlock;
PowerCadl.CurrentBlock := 'c:\blocks\vane.pwb';
end;

Defined in PCDrawing unit

Selection |TList

Use the Selection property to access the list of the figures
that are selected.

Ex:
For a := 0 to Powercadl.Selection.Count-1 do
begin
MyFigure := TFigure (Powercadl.Selection[al);
if myFigure is TLine then inc(cnt);
end;
ShowMessage ('There are ' + inttostr(cnt) + ' lines');

Defined in PCDrawing unit

Activelayer |TList

Use the Activelayer property to define the layer to which the
drawing commands will be applied.

Ex: PowerCadl.Activelayer := 0; // Base layer

Defined in PCDrawing unit

DefaultPenColor | TColor

Use the DefaultPenColor property to define the color of the
default pen. This default value is used when a figure is drawn
by mouse clicks or macros.

Ex: PowerCadl.DefaultPenColor := clBlack;

Defined in PCDrawing unit

DefaultPenWidth | Integer

Use the DefaultPenWidth property to define the width of the
default pen. This default value is used when a figure is drawn
by mouse clicks or macros.

Ex: PowerCadl.DefaultPenWidth := 1;

Defined in PCDrawing unit

DefaultPenStyle | TPenStyle

Use the DefaultPenStyle property to define the style of the
default pen. This default value is used when a figure is drawn
by mouse clicks or macros.

Ex: PowerCadl.DefaultPenWidth := 1;

Defined in PCDrawing unit

DefaultRowStyle | TRowStyle

Use the DefaultRowStyle property to define the row style of the
default pen when drawing lines or polylines. This default value
is used when a line or polyline is drawn by mouse clicks or
macros.

Ex: PowerCadl.DefaultRowStyle := rsNone;

Defined in PCDrawing unit

DefaultBrushColor |[TColor

Use the DefaultBrushColor property to define the color of the
default brush. This default value is used when a figure is
drawn by mouse clicks or macros.

Ex: PowerCadl.DefaultBrushColor := clWhite;

Defined in PCDrawing unit

DefaultBrushStyle |[TBrushStyle

Use the DefaultBrushStyle property to define the style of the
default brush. This default value is used when a figure is
drawn by mouse clicks or macros.

Ex: PowerCadl.DefaultBrushStyle := bsSolid;

Defined in PCDrawing unit

BlockDirectory |String

Set the BlockDirectory property with the path of your blocks
folder.

Ex: PowerCadl.BlockDirectory := 'c:\MyBlocks\';

Defined in PCDrawing unit

PluginDirectory |String

Set the PluginDirectory property with the path of your plugins
folder.

Ex: PowerCadl.PluginDirectory := 'c:\MyPlugins\';

Defined in PCDrawing unit

LayerCount | Integer

Use this ReadOnly LayerCount property to het the number of the
layers in the drawing.

Ex: cnt := PowerCadl.LayerCount;

Defined in PCDrawing unit

MapScale | Integer

Use the MapScale property to define the mapping Scale of your
drawing. The mapping sclae of a drawing is the ration of the
figure sizes (on paper) to the real world sizes. The mapsclae
value is used in Dimensioning Lines.

Ex: // If your mapping sclae is 1/50
PowerCadl.MapScale := 50;

Defined in PCDrawing unit

AutSelect |Boolean

Use the AutoSlect property to define the selection of a figure
drawen by mouse clicks. if it is true, then the figure will be
slected just after it is drawen.

Ex: PowerCadl.AutoSelect := true;

Defined in PCDrawing unit

Font TFont

Use the Font property to access the default font of the
control.

Ex: PowerCadl.Font.Name:= 'Arial';

Defined in PCDrawing unit

MouseCommands |Boolean

Use the MouseCommands property to define the behaviour of
PowerCad to mouse clicks. If it is set to false, the mouse
clicks will not ne interpretted as commands. If you want to
handle mouse clicks by your own, the set this property to
false.

Ex: PowerCadl.MouseCommands := False;

Defined in PowerCad unit

KeyCommands |Boolean

Use the KeyCommands property to define the behaviour of
PowerCad to key strokes. If it is set to false, the key strokes
will not ne interpretted as commands. If you want to handle key
strokes by your own, the set this property to false. By default
this property is true, and the key strokes are checked if they
mean for a specific action before they are fired as key event.

Ex: PowerCadl.KeyCommands := False;

Defined in PowerCad unit

Methods

SetZoomHints

Procedure SetZoomHints (Hintlist: TStringList);

Use the SetZoomHints method to define the hints (tooltips) of
the zoom buttons in the buttom panel.

Parameter Definitions:

HintList : The StringList that includes the Hint strings. The
count should be equal to 5.

Ex:
Hlist := TStringlist.Create;
HList.Add('Zoom In');
HList.Add('Zoom OQut');
HList.Add ('Zoom Rect');
HList.Add ('Actual Size');
HList.Add('FitToPage');

PowerCadl.SetZoomHints (HList) ;
HList.Free;

Defined in PCPanel unit

ZoomArea

Procedure ZoomArea (ZoomRect:TRect) ;

Use the ZoomArea method to zoom the screen to a specific
location.

Parameter Definitions:

ZoomRect: The Trect that includes the screen locations to
zoomed. The coordinates should be in dmm unit.

Ex:
ZRect := Rect (100,200,300,400);
PowerCadl.ZoomArea (ZRect) ;

Defined in PCDrawBox unit

FitToWindow

Procedure FitToWindow;

Use the FitToWindow method to fit entire page to the screen.
The scale property value will be calculated automatically.

Ex:
PowerCadl.FitToWindow;

Defined in PCDrawBox unit

10

ConvertXyY

Procedure ConvertXY (var X,Y: integer);
Use the ConvertXY method to convert a drawing point coordinate
to pixel coordinate of the Surface paintbox. Normally you will

not need to use this method.

Parameter Definitions:

X: The x coordinate of the point to be converted to pixel
Y: The y coordinate of the point to be converted to pixel

Ex:
x1l := 100; yl1 := 100;
X2 200; y2 := 200;
PowerCadl.ConvertXY (x1,vyl);
PowerCadl.ConvertXY (x2,vy2);
PowerCadl.Surface.Canvas.MoveTo (x1,vy1l);
PowerCadl.Surface.Canvas.LineTo (x2,vy2) ;

Defined in PCDrawBox unit

ConvertDim

Procedure ConvertDim(var Dim: integer);
Use the ConvertDim method to convert a drawing dimension
(length, radius,etc.) to pixel length in the Surface paintbox.

Normally you will not need to use this method.

Parameter Definitions:

Dim : The value to be converted to pixel count

Ex:
x1l := 100; yl1 := 100;
r := 100;
PowerCadl.ConvertXY (x1,vyl);
PowerCadl.ConvertDim(r) ;
PowerCadl.Surface.Canvas.MoveTo (x1,vy1l);
PowerCadl.Surface.Canvas.LineTo (x1+r,yl+r) ;

Defined in PCDrawBox unit

11

DeConvertXY

Procedure DeConvertXY (var X,Y: integer);
Use the DeConvertXY method to convert a pixel coordinate of
Surface paintbox to drawing drawing point coordinate in dmm

units. Normally you will not need to use this method.

Parameter Definitions:

X: The x coordinate of the point to be converted to dmm
Y: The y coordinate of the point to be converted to dmm

Ex:
x1l := 0; vyl := 0;
x2 := Powercadl.Surface.Width;
y2 := Powercadl.Surface.Height;

PowerCadl.DeConvertXY (x1,vyl);
PowerCadl.DeConvertXY (x2,vy2) ;
PowerCadl.Rectangle (0,x1,vy1l,x2,y2,1,0,255,0,0,true);

Defined in PCDrawBox unit

DeConvertDim

Procedure DeConvertDim(var Dim: integer);
Use the DeConvertDim method to convert a pixel length of
Surface paintbox to drawing dimension in dmm unit. Normally you

will not need to use this method.

Parameter Definitions:

Dim : The value to be converted to dmm

Ex:
x1 := 25; yl := 25;
r := 50;
PowerCadl.ConvertXY (x1,vyl);
PowerCadl.ConvertDim(r) ;
PowerCadl.Circle(0,x1,yl,r,1,0,255,0,0,true);

Defined in PCDrawBox unit

12

DeConvertDim

Procedure DeConvertDim(var Dim: integer);
Use the DeConvertDim method to convert a pixel length of
Surface paintbox to drawing dimension in dmm unit. Normally you

will not need to use this method.

Parameter Definitions:

Dim : The value to be converted to dmm

Ex:
x1 := 25; yl := 25;
r := 50;
PowerCadl.ConvertXY (x1,vyl);
PowerCadl.ConvertDim(r) ;
PowerCadl.Circle(0,x1,y1l,r,1,0,255,0,0,true);

Defined in PCDrawBox unit

NewLayer

Function NewlLayer (LayerName:string) :Integer;
Use NewLayer method to create a new layer.

Parameter Definitions:

LayerName: The name of the layer to be created.
ReturnHandle : The Index of the layer in the Layers list.
Ex:

Index := PowerCadl.NewLayer ('Mylayer');
Layer := TLayer (PowerCadl.Layers[Index])

Defined in PCDrawing unit

GetLayerNbr

Function GetLayerNbr (LayerName: string) :Integer;

Use GetlLayerNbr method to get the list index of a layer by
using its name.

Parameter Definitions:

LayerName: The name of the layer..
ReturnHandle : The list index of the layer.
Ex:

INbr := PowerCadl.GetLayerNbr ('Mylayer');
Powercadl.HideLayer (1Nbr) ;

Defined in PCDrawing unit

13

Deletelayer

Function Deletelayer (LayerName: string): boolean;
Use Deletelayer method to delete layer from the list. Deleting
a layer will also delete the figures that belong to the deleted

layer.

Parameter Definitions:

LayerName: The name of the layer to be deleted.
ReturnHandle : Returns true if deletion is succeded.
Ex:

if PowerCadl.Deletelayer ('Mylayer') then
ShowMessage ('Layer is deleted');

Defined in PCDrawing unit

DeleteLayerWithNbr

Function DeletelayerWithNbr (LayerNbr:Integer): boolean;
Use DeletelLayerWith method to delete layer from the list with
the layer index. Deleting a layer will also delete the figures

that belong to the deleted layer.

Parameter Definitions:

LayerNBr: The list index of the layer to be deleted.
ReturnHandle : Returns true if deletion is succeded.
Ex:

if PowerCadl.DeletelLayerWithNbr (1) then
ShowMessage ('Layer is deleted');

Defined in PCDrawing unit

DeleteAllUserlLayers

Procedure DeleteAllUserlLayers;

Use DeleteAllUserlayers method to delete the layers that are
created by your application. All layers that are not base layer
are user layers.

Ex:
PowerCadl.DeleteAllUserlayers;

Defined in PCDrawing unit

14

ShowLayer

Procedure Showlayer (LayerNbr:Integer) ;
Use ShowLayer method to make a layer visible.

Parameter Definitions:

LayerNBr: The list index of the layer to be shown.

Ex:
PowerCadl.ShowLayer (1) ;

Defined in PCDrawing unit

Hidelayer

Procedure Hidelayer (LayerNbr:Integer) ;
Use Hidelayer method to make a layer invisible.

Parameter Definitions:

LayerNBr: The list index of the layer to be hidden.

Ex:
PowerCadl.HideLayer (1) ;

Defined in PCDrawing unit

Fluelayer

Procedure Fluelayer (LayerNbr:Integer) ;
Use Fluelayer method to make a layer grayed. A grayed layer is
drawn in gray color, so that other layers are more clear to

view.

Parameter Definitions:

LayerNBr: The list index of the layer to be hidden.

Ex:
PowerCadl.Fluelayer (1) ;

Defined in PCDrawing unit

15

ExFlueLayer

Procedure ExFluelayer (LayerNbr:Integer);

Use ExFluelLayer method to make all layers grayed but not one. A
grayed layer is drawn in gray color, so that other layers are
more clear to view. Use ExFluelayer when you want focus on one
layer and flue all others.

Parameter Definitions:

LayerNBr: The list index of the layer to be exflued.

Ex:
PowerCadl.ExFluelayer (1) ;

Defined in PCDrawing unit

ExHideLayer

Procedure ExHidelayer (LayerNbr:Integer) ;
Use ExHideLayer method to make all layers invisible but not
one. Use ExHideLayer when you want focus on one layer and hide

all others.

Parameter Definitions:

LayerNBr: The list index of the layer to be exflued.

Ex:
PowerCadl.ExHideLayer (1) ;

Defined in PCDrawing unit

HideAllLayers

Procedure HideAllLayers;
Use HideAllLayers method to make all layers invisible.

Ex:
PowerCadl.HideAllLayers;

Defined in PCDrawing unit

HideAllLayers

Procedure ShowAllLayers;
Use HideAllLayers method to make all layers visible.

Ex:
PowerCadl.ShowAllLayers;

Defined in PCDrawing unit

16

MergeAllLayers

Procedure MergeAllLayers;

Use MergeAlllLayers method to merge all layers in the Base
Layer.

Ex:
PowerCadl.MergeAllLayers;

Defined in PCDrawing unit

MergeVisiblelayers

Procedure MergeVisiblelayers;

Use MergeVisiblelayers method to merge all visible layers in
the first visible layer.

Ex:
PowerCadl.MergeVisiblelayers;

Defined in PCDrawing unit

GetLayerInfo

Function GetLayerInfo (LayerNbr:Integer): TLayerInfo;
Use GetlLayerInfo method to get all information about a layer.

Parameter Definitions:

LayerNBr: The list index of the layer

ReturnHandle : Returns a comapct information in TLayerInfo
type.

TLayerInfo = record
Name : String; // Name of the layer
Visible : Boolean; // True if layer is visible

Flue : Boolean; // True if layer is grayed
End;
Ex:
LInfo := PowerCadl.GetLayerInfo (4);
Mes := LInfo.Name + ' Layer';
if LInfo.Visible then
Mes := Mes + ' is visible and'
else
Mes := Mes + ' is invisible and';
if LInfo.Flue then
Mes := Mes + ' is grayed'
else
Mes := Mes + ' is not grayed';

ShowMessage (Mes) ;
// Vanes Layer 1s visible and not grayed.

Defined in PCDrawing unit

17

Undo

Procedure Undo;

Use Undo method to return to the state just before the last
action. Powercad allows unlimited undos.

Ex:
PowerCadl.Undo;

Defined in PCDrawing unit

Redo

Procedure Redo;

Use Redo method to redo the action which is undone by an unco
call.

Ex:
PowerCadl .Redo;

Defined in PCDrawing unit

ClearUndolList

Procedure ClearUndoList;

Use ClearUndolist method to clear the list that the actions are
recorded to be undone. If you clear the undo list you can not
undo the actions that are before this method call. Normally,
PowerCad clears undo list only when saving the drawing.

Ex:
PowerCadl.ClearUndoList;

Defined in PCDrawing unit

DrawFigures

Procedure DrawFigures;

Use DrawFigures method to draw the figures within the inner
DrawEngine of PowerCad. This method is usefull when you want to
draw figures to a different canvas with different conversion
settings.

Ex:
PowerCadl.DEngine.Canvas := Forml.Canvas;
PowerCadl.DEngine.ConvertPoint := CPointProc;
PowerCadl.DEngine.ConvertLen := CDimProc;
PowerCadl.DEngine.DeConvertPoint := DeCPointProc;
PowerCadl.DEngine.DeConvertLen := DeCDimProc;
Powercadl.DrawFigures;

Defined in PCDrawing unit

18

DrawSelectedFigures

Procedure DrawSelectedFigures;

Use DrawSelectedFigures method to draw the selected figures
within the inner DrawEngine of PowerCad. This method is usefull
when you want to draw selected figures to a different canvas
with different conversion settings.

Ex:
PowerCadl.DEngine.Canvas := Forml.Canvas;
PowerCadl.DEngine.ConvertPoint := CPointProc;
PowerCadl.DEngine.ConvertLen := CDimProc;
PowerCadl.DEngine.DeConvertPoint := DeCPointProc;
PowerCadl.DEngine.DeConvertLen := DeCDimProc;
Powercadl.DrawSelectedFigures;

Defined in PCDrawing unit

SelectAll

Procedure SelectAll (LayerNbr:Integer);
Use SelectAll method to select all the figures in the given
layer. If you give the baselayer in the parameter, figures in

all layers will be selected.

Parameter Definitions:

LayerNBr: The list index of the layer. Give 0 for all layers.

Ex:
PowerCadl.SelectAll (0);

Defined in PCDrawing unit

DeSelectaAll

Procedure DeSelectAll (LayerNbr:Integer);
Use DeSelectAll method to deselect all the figures in the given
layer. If you give the baselayer in the parameter, figures in

all layers will be deselected.

Parameter Definitions:

LayerNBr: The list index of the layer. Give 0 for all layers.

Ex:
PowerCadl.DeSelectAll (0) ;

Defined in PCDrawing unit

19

InvertSelection

Procedure InvertSelection;

Use InvertSelection method to select the unselected figures and
to deselect the selected figures.

Ex:
PowerCadl.InvertSelection;

Defined in PCDrawing unit

GroupSelection

Function GroupSelection:TFigHandle;
Use GroupSelection method to make a TFigureGrp object from the
selected figures. Use the return handle to access the new

group.

Parameter Definitions:

Return Value: The handle of the created TFigureGrp

Ex:
Handle := PowerCadl.GroupSelection;
TFigureGrp (Handle) .Combined := True;

Defined in PCDrawing unit

UnGroupSelection

Procedure UnGroupSelection;

Use UnGroupSelection method to ungroup the figure groups that
are in the selection. This method ungroups all groups that are
selected.

Ex:
PowerCadl.UnGroupSelection;

Defined in PCDrawing unit

20

OrderSelection

Procedure OrderSelection (Dest: TOrderStyle);

Use OrderSelection method to change the z-order of the selected
figures.

Parameter Definitions:

Dest: The order destination parameter. It can have following
values of TOrderStyle.
osBack : Sends the selected figures to the most back.
osFront : Sends the selected figures to the most front.
osBWard : Sends the selected figures to one step back.
osFWard : Sends the selected figures to one step front.

Ex:
PowerCadl.OrderSelection (osBack) ;

Defined in PCDrawing unit

RemoveSelection

Procedure RemoveSelection;
Use RemoveSelection method to delete the selected figures.

Ex:
PowerCadl.RemoveSelection;

Defined in PCDrawing unit

RotateSelection

Procedure RotateSelection (Angle:Integer;rPoint: TPoint);

Use RotateSelection method to rotate the selected figures
arround a center point with a given angle.

Parameter Definitions:

Angle : The rotation angle, the unit is 1/10 of degree.
Ex: For 10 degrees use 100.
rPoint: The rotation center point.

Ex:
PowerCadl.RotateSelection (100, Point (450,235));

Defined in PCDrawing unit

21

MirrorSelection

Procedure MirrorSelection (Pointl,Point2: TPoint;Dupl:Boolean);

Use MirrorSelection method to reflect the selected figures
across a given axis.

Parameter Definitions:

Pointl,

Point2 : The points that define the reflection axis.

Dupl : When set to true, the selected objects are first
duplicated and then the duplication is reflected, so
that the original figures are saved.

Ex:

pl := Point(100,100); p2 := Point (100,200);

PowerCadl.MirrorSelection (pl,p2, True) ;

Defined in PCDrawing unit

InvertArcsOfSelection

Procedure InvertArcsOfSelection;

Use InvertArcsOfSelection method to invert the direction of the
selected arcs.

Ex:
PowerCadl.InvertArcsOfSelection;

Defined in PCDrawing unit

ArrangeArcStyleOfSelection

Procedure ArrangeArcStyleOfSelection(Value: Integer);

Use ArrangeArcStyleOfSelection method to arraneg the style of
the selected arcs.

Parameter Definitions:

Value : The style that will be applied to the arcs. It can have
following values.
0: Normal Arc (Open)
1: Pie Arc (Close)
2: Chord Arc (Close)

Ex:
PowerCadl.ArrangeArcStyleOfSelection (0) ;

Defined in PCDrawing unit

22

CloseSelectedPolyLine

Procedure CloseSelectedPolyline;

Use CloseSelectedPolylLine method to close the selected
polyline. Only closed figures can have a region to be filled. A
closed polyline will have additional segment from last point to
the first point.

Ex:
PowerCadl. CloseSelectedPolyline;

Defined in PCDrawing unit

OpenSelectedPolyLine

Procedure OpenSelectedPolyline;

Use OpenSelectedPolylLine method to open the selected polyline.
Open figures can’t have a region to be filled.

Ex:
PowerCadl.OpenSelectedPolyline;

Defined in PCDrawing unit

ConvertToBezier

Procedure ConvertToBezier;

Use ConvertToBezier method to make curve all segments of the
selected polyline(s).

Ex:
PowerCadl.ConvertToBezier;

Defined in PCDrawing unit

ConvertToPolyline

Procedure ConvertToPolyline;

Use ConvertToPolyline method to make line all segments of the
selected polyline(s).

Ex:
PowerCadl.ConvertToPolyline;

Defined in PCDrawing unit

23

FlipImagesOfSelection

Procedure FlipImagesOfSelection (FlipMode:TFlipMode) ;

Use FlipImagesOfSelection method to flip the bitmap objects
that are selected in a drawing.

Parameter Definitions:

FlipMode : Use this parameter to define the orientation of
flipping.
fmVert : Use this to flip in vertical direction.
fmHorz : Use this to flip in horizontal direction.

Ex:
PowerCadl.FlipImagesOfSelection (fmVert) ;

Defined in PCDrawing unit

SetTransparentOfSelection

Procedure SetTransparentOfSelection (Transparent:Boolean);

Use SetTransparentOfSelection method to set the transparency of
the selected bitmap objects.

Parameter Definitions:

Transparent : Set to true to make transparent, false to make
opadque.

Ex:
PowerCadl.SetTransparentOfSelection (True) ;

Defined in PCDrawing unit

24

ScaleSelection

Procedure ScaleSelection (PercentX,PercentY:Integer;
rPoint:TPoint) ;

Use ScaleSelection method to redimension the selected figures.
The figures’ point coordinates will be recalculated according

to the percent values and scaling center.

Parameter Definitions:

PercentX : The scale percantage in horizontal direction. Use
100 fro no sclaing, 50 for half size, 200 for souble
size, etc.

PercentY : The scale percantage in vartical direction. Use
100 fro no sclaing, 50 for half size, 200 for souble
size, etc.

rPoint : The scale center point. The new coordinates will be
relocated according to the distance to this point.
The percantage will be applied to this distance.

Ex:
PowerCadl.ScaleSelection(100,200,Point (0,0));

Defined in PCDrawing unit

ModifySelection

Procedure ModifySelection (mm: TModifyMode; Value: Integer);

Use ModifySelection method to modify the pen and brush
attributes of the selected figures.

Parameter Definitions:

mm : Use this parameter to define which attribute of the
figure will be modified. It can have following values.
mmPenColor: The pen color will be modified
mmPenWidth: The pen width will be modified
mmPenStyle: The pen style will be modified
mmRowStyle: The row style will be modified
mmBrushColor: The brush color will be modified
mmBrushStyle: The brush style will be modified

value : The new value of the attribute.

Remark: Other values of TModifyMode are ignored in this method.

Ex:
PowerCadl.ModifySelection (mmPenStyle, ord(psDash)) ;

Defined in PCDrawing unit

25

ModifyTextAndFont

Procedure ModifyTextAndFont (mm: TModifyMode; Valuel: Integer;
ValueS: String; ValueSt: TFontStyles);

Use ModifyTextAndFont method to modify the text and font
attributes of the selected figures.

Parameter Definitions:

mm : Use this parameter to define which attribute of the
figure will be modified. It can have following values.
mmText: The text will be modified
mmFontName: The font name will be modified
mmFontSize: The font size will be modified
mmFontCs: The font charset will be modified
mmFontColor: The font color will be modified
mmFontStyle: The font style will be modified

valueI : The new value of the attribute when it is Integer. Use
this parameter when mm is set to mmFontSize, mmFontCs
or mmFontColor.

valueS : The new value of the attribute when it is String. Use
this parameter when mm is set to mmText, mmFontName.

valueSt: The new value of the attribute when it is fontstyle.
Use this parameter when mm is set to mmFontStyle.

Remark: Other values of TModifyMode are ignored in this method.

Ex:
PowerCadl.modifyTextAndFont (mmText, 'New Text');

Defined in PCDrawing unit

GetSelectionRect

Function GetSelectionRect:TRect;

Use GetSelectionRect method to get the bounding rectangle
coordinates of the selected figures.

Parameter Definitions:

Retrun Value: The coordinates of the bounding rectnagle of all
selected figures together in dmm unit.

Ex:
xRect := PowerCadl.GetSelectionRect;
with xrect do
Powercadl.DEngine.DrawRect (left, top, right,bottom, clRed, 1,
ord (psDash), 0,o0rd (bsClear)) ;

Defined in PCDrawing unit

26

AlignSelection

Prcedure AlignSelection(HorzAlign:THorzAligns;
VertAlign:TVertAligns) ;

Use AlignSelection method to align the selected figures in
horizontal direction and vertical axis.

Parameter Definitions:

HorzAlign: The align type in horizontal axis. It can have
following values.
haNoChange: No aligning in horizontal axe axis
haTop: Aligns the tops of the figures.
haBottom: Aligns the bottoms of the figures.
haCenter: Aligns the vertical centers on horizontal
axis.
haDistHorz: Distrubutes the distances between
figures equally in horizontal axis.
VertAlign: The align type in vertical axis. It can have
following values.
vaNoChange: No aligning in vertical axis.
vaLeft: Aligns the right sides of the figures.
vaRight: Aligns the right sides of the figures.
vaCenter: Aligns the horizontal centers on vertical
axis.
vaDistVert: Distrubutes the distances between
figures equally in vertical axis.

Ex:
PowerCadl.AlignSelection (haTop,valeft) ;

Defined in PCDrawing unit

Refresh

Prcedure Refresh;

Use Refresh method to redraw the drawing. This method will not
work if the AutoRefresh is set to false. See ManualRefresh.

Ex:
PowerCadl.Refresh;

Defined in PCDrawing unit

ManualRefresh

Prcedure ManualRefresh;

Use ManualRefresh method to redraw the drawing. This method
will refresh the drawing regardless of AutoRefresh property.

Ex:
PowerCadl .ManualRefresh;

Defined in PCDrawing unit

27

CheckByPoint

Function CheckByPoint (LayerNbr,x,y: integer) :TFigure;

Use CheckByPoint method to learn if a point is in/on a figure.
Use this method in hit test.

Parameter Definitions:

LayerNbr : The list index of the layer that the check will be
done. Use 0 for all layers.
X,y : The coordinates of the test point to be checked.

Return Value: Returns the class reference of the hit figure. If
the point stands for no figure then the result is nil.

Ex:
xFig := PowerCadl.CheckByPoint (0,x,V);
if (xFig <> nil) then xFig.Color := clRed;

Defined in PCDrawing unit

SelectByPoint

Function SelectByPoint (LayerNbr,x,y: integer;
ShiftPressed:Boolean) : Boolean;

Use SelectByPoint method to select a figure by the given point.
The figure is selected if the point is in/on the figure..

Parameter Definitions:

LayerNbr : The list index of the layer that the selection will
be done. Use 0 for all layers.
X,y : The coordinates of the selecting point.
ShiftPressed : if this parameter is true, then the selected
figure is added to the selection. Otherwise
already selected figures are deselected and then
the new selection is made.

Return Value: Returns true if any figure can be selected.

Ex:
PowerCadl.SelectByPoint (0,x,y, false);

Defined in PCDrawing unit

28

SelectWithInArea

Function SelectWithInArea (LayerNbr: integer; Area: TRect;
ShiftPressed: Boolean): Boolean;

Use SelectWithInArea method to select figure or figures that
are with in the borders of the given rectangular area.

Parameter Definitions:

LayerNbr : The list index of the layer that the selection will

be done. Use 0 for all layers.

Area : The Selection Area in TRect type. The Rect
values should be in dmm.

ShiftPressed : if this parameter is true, then the selected
figures are added to the selection. Otherwise
already selected figures are deselected and then
the new selection is made.

Return Value: Returns true if any figure can be selected.

Ex:
// This code below, selects all the figures that are in the
limits of the drawing page.
ww := Powercadl.WorkWidth;
wh := Powercadl.WorkHeight;
PowerCadl.SelectWithInArea (0,Rect (0,0, ww,wh), false);

Defined in PCDrawing unit

MoveSelection

Procedure MoveSelection (deltaX,delta¥Y: integer);

Use MoveSelection method to move the the selected figures in
horizontal and/or vertical directions.

Parameter Definitions:

deltaX : The movement distance in horizontal direction. Should
be in dmm unit.

deltaY : The movement distance in vertical direction. Should be
in dmm unit.

Ex:
PowerCadl .MoveSelection (100, 120) ;

Defined in PCDrawing unit

29

DuplicateSelection

Procedure DuplicateSelection(deltaX,delta¥Y: integer);

Use DuplicateSelection method to clone the selected figures,
and then move the new figures.

Parameter Definitions:

deltaX : The movement distance after cloning in horizontal
direction. Should be in dmm unit.

deltaY : The movement distance after cloning in vertical
direction. Should be in dmm unit.

Ex:
PowerCadl.DuplicateSelection (100,120) ;

Defined in PCDrawing unit

ArrayRectSelection

Procedure ArrayRectSelection (distanceX,distanceY: integer;
col,row: integer);

Use ArrayRectSelection method to clone the selected figures,
an rectangular array.

Parameter Definitions:

distanceX : The distance between the clones in horizontal
direction. Should be in dmm unit.

distanceY : The distance between the clones in vertical
direction. Should be in dmm unit.

col : The number of columns of the clone array

row : The number of rows of the clone array

Remark : The selected figure(s) will be cloned (col*row)-1
times.

Ex:
PowerCadl.ArrayRectSelection (50,50,4,3);

as

Defined in PCDrawing unit

30

ArrayPolarSelection

Procedure ArrayPolarSelection (cPoint:Tpoint; angle:integer);

Use ArrayPolarSelection method to clone the selected figures,
as a circular (polar) array around a center point.

Parameter Definitions:

cPoint : The center point of the circlar array.
angle : the angle between tow clones. It should be given as
1/10 degrees. (for 10 degrees use 100)

Remark : Each clones is also rotated around its own center
according to its angle.
The number of clones is equal to (3600 div angle)-1

Ex:
PowerCadl.ArrayPolarSelection (Point (50,50),450);

Defined in PCDrawing unit

MakeSelectionBlock

Procedure MakeSelectionBlock (FileName:string) ;

Use MakeSelectionBlock method to create a block file from the
selected figures.

Parameter Definitions:

FileName : The file name of the block with its path.

Remark : To create a block, only one figure should be selected.
To make a block from more than one figure, you should first
group the selection.

Ex:
PowerCadl .MakeSelectionBlock ('c:\Blocks\TestBlock.pwb')

Defined in PCDrawing unit

31

BoundLineToFigures

Procedure BoundLineToFigures (BLine,jfl,jf2:TFigure);
Use BoundLineToFigures method to join the ends of a Line or a
Polyline to other figures. Bounded (Joined) Line-Ends move when

the join figure moves.

Parameter Definitions:

BLine : The figure class reference or figure handle of the
Line/PolyLine that will be bound.

jF1 : The figure class reference or figure handle of any figure
that the starting point of the line/polyline will be joined to.
Set this to nil if you don’t want to join the start point.

jF2 : The figure class reference or figure handle of any figure
that the ending point of the line/polyline will be Jjoined to.
Set this to nil if you don’t want to join the ending point.

Ex:
PowerCadl.BoundLineToigures (myLine,myRect,myCircle);

Defined in PCDrawing unit

BoundLinePoint

Procedure BoundLinePoint (BLine:TFigure; SegNbr:integer;
bPoint:Tpoint) ;

Use BoundLinePoint method to join one end of a Line or a
Polyline to the figure in/on which the bPoint is.PowerCad first
checks if any figure is selectable by bPoint, then bounds the
end of a line to that figure from the bPoint.

Parameter Definitions:

BLine : The figure class reference or figure handle of the
Line/PolyLine that will be bound.

SegNbr : The indication for the bounding point of
Line/PolyLine. Use 1 for the start point, 2 for the ending
point.

bPoint : The hit test point that will defined the join figure
and defines the bounding point of two figures.

Ex:
// This code takes the center of a circle as bounding point.
// Sets the ending point of a line to the bounding point.
// Then bounds the figures from this point.
bPoint := myCircle.FigurePoints[1l];
MyLine.FigurePoints[2] := bPoint;
PowerCadl.BoundLinePoint (myLine,2,bPoint);

Defined in PCDrawing unit

32

BoundSelectedLine

Procedure BoundSelectedLine;

Use BoundSelectedLine method to join a line or polyline with
any figure that the line ends or in/on. Powercad checks if the
line ends of the selected line/polyline can hit on any figure
and then bounds the hitting end to the hit figure.

Ex:
// To use this method first move the line as 1ts end can hit
// any figure. The call this method. See that the line will
// be joined with the hit figure.
PowerCadl.BoundSelectedLine;

Defined in PCDrawing unit

UnboundLine

Procedure UnBoundLine;

Use UnBoundLine method to break the joins of any selected
line/polyline if its bound to any figure.

Ex:
PowerCadl .UnBoundLine;

Defined in PCDrawing unit

MakeSelectedLinesPolyline

Function MakeSelectedLinesPolyline:TFigHandle;
Use MakeSelectedLinesPolyline method to create a polyline from
the selected lines. The line ends form the knots of the

polyline.

Parameter Definitions:

Return Value : The figure handle of the created polyline is

returned.

Ex:
Handle := PowerCadl.MakeSelectedLinesPolyLine;
TPolyLine (Handle) .Closed := True;

Defined in PCDrawing unit

33

ClipSelBitmapToSelFigure

Procedure ClipSelBitmapToSelFigure;

Use ClipSelBitmapToSelFigure method to clip bitmaps in closed
regions. To make this, before calling this method, a bitmap and
a close figure (circle,rectangle,ellipse or closed polyline)
should be selected. The bitmap is drawn in the bounds of the
closed figure.

Ex:
PowerCadl.ClipSelBitmapToSelFigure;

Defined in PCDrawing unit

UnClipSelBitmap

Procedure UnClipSelBitmap;

Use UnClipSelBitmap method to cancel the clipping of a clipped
bitmap.

Ex:
PowerCadl.UnClipSelBitmap;

Defined in PCDrawing unit

SaveToFile

Procedure SaveToFile (LayerNbr: Integer; FileName:String);
Use SaveToFile method to save the drawing to a file in
PowerCad’s own file format. This method can save either a layer

or all layers to the file.

Parameter Definitions:

LayerNbr : The list index of the layer to be saved. Use 0 for
all drawing to be saved.

FileName : The name of the file with its path that the drawing
will be saved to. If the file already exists, it is overwritten
with out any prompt.

Ex:
if SaveDialogl.Execute then
PowerCadl.SaveToFile (0, SaveDialogl.FileName) ;

Defined in PCDrawing unit

34

LoadFromFile

Procedure LoadFromFile (FileName:String) ;

Use LoadFromFile method to load a drawing from a file. The file
should be saved with the SaveToFile method of PowerCad.

Parameter Definitions:

FileName : The name of the file with its path that the drawing
will be loaded from.

Ex:
if OpenDialogl.Execute then
PowerCadl.LoadFromFile (OpenDialogl.FileName) ;

Defined in PCDrawing unit

SaveToStream

Procedure SaveToStream(Stream:TStream) ;

Use SaveToStream method to save the drawing to a Delphi
TStream. The drawing is written to the stream from the current
stream position. The stream can have some application specific
data before or after the PowerCad drawing data.

Parameter Definitions:

Stream : The TStream object in which the drawing is stored.

Ex:

if SaveDialogl.execute then

begin
fStream := TFileStream.Create (fmWrite,

SaveDialogl.FileName) ;

ApplicationDatal.SaveToStream(fStream) ;
PowerCadl.SaveToStream(fStream) ;
ApplicationData2.SaveToStream(fStream) ;
fStream. free;

end;

Defined in PCDrawing unit

35

LoadFromStream

Procedure LoadFromStream (Stream:TStream) ;

Use LoadFromStream method to load a drawing from a Delphi
TStream. The stream position should be in the location where
the drawing is started to be written. If the stream is only for
the Powercad drawing, then the position should be 0.

Parameter Definitions:

Stream : The TStream object in which the drawing is stored.

Ex:

if OpenDialogl.execute then

begin
fStream := TFileStream.Create (fmOpenRead,

OpenDialogl.FileName) ;

ApplicationDatal.LoadFromStream(fStream) ;
PowerCadl.LoadFromStream (fStream) ;
ApplicationData2. LoadFromStream(fStream);
fStream. free;

end;

Defined in PCDrawing unit

InsertBlockWithFileName

Function InsertBlockWithFileName (LayerNbr:Integer;
FileName:string;
x,y:Integer) :TFigHandle;

Use InsertBlockWithFileName method to insert a block object
from a file.

Parameter Definitions:

LayerNbr : The list index of the layer to which the block will
be inserted.

FileName : The file name of the block with its path
information.

X,y : The coordinates that the inserted block will be
located on.

Return Value: The figure handle of the inserted block.

Ex:
if OpenDialogl.execute then
begin
handle := PowerCadl.InsertBlockWithFileName (
Powercadl.Activalayer,
OpenDialogl.FileName, 0,0);
TBlock (Handle) .Color := clRed;
end;

Defined in PCDrawing unit

36

InsertBlockFromStream

Function InsertBlockFromStream(LayerNbr:Integer;
Stream:TStream;
x,y:Integer) :TFigHandle;

Use InsertBlockFromStream method to insert a block object from
a Delphi Stream. The stream position should be in the location

where the block is started to be written.

Parameter Definitions:

LayerNbr : The list index of the layer to which the block will
be inserted.

Stream : The Tstream object.

X,y : The coordinates that the inserted block will be
located on.

Return Value: The figure handle of the inserted block.

Ex:
handle := PowerCadl.InsertBlockFromStream (
Powercadl.Activalayer,
blkStream, 0,0);
TBlock (Handle) .Color := clRed;

Defined in PCDrawing unit

ExportAsWmf

Procedure ExportAsWmf (FileName:String) ;

Use ExportAsWmf method to export the drawing as Windows
Enhanced Metafile.

Parameter Definitions:

FileName : The name of the windows meta file that the drawing
will be exported. If the file already exists, then the existing
file will be overwritten.

Ex:
if SaveDialogl.Execute then
PowerCadl.ExportAsWmf (SaveDialogl.Filename) ;

Defined in PCDrawing unit

37

SaveAsBitmap

Procedure SaveAsBitmap (FileName:String);

Use SaveAsBitmap method to export the drawing as Windows
Bitmap.

Parameter Definitions:

FileName : The name of the windows bitmap that the drawing will
be saved. If the file already exists, then the existing file
will be overwritten.

Ex:
if SaveDialogl.Execute then
PowerCadl.SaveAsBitmap (SaveDialogl.Filename) ;

Defined in PCDrawing unit

SelectionAsWmf

Function SelectionAsWmf:TMetafile;

Use SelectionAsWmf method to get the selected figures to be
drawn as metafile.

Parameter Definitions:

Return Value : The metafile object that the selction is drawn.
This metafile is created by the function itself, but it should
be freed by the function user after it is used.

Ex:
mf := Powercadl.SelectionAsWmf;
Forml.Canvas.Draw (0,0, mf) ;
mf.free;

Defined in PCDrawing unit

38

DrawToDc

Procedure DrawToDc (dc, x,y,DScale:Integer);

Use DrawToDc method to draw the drawing to a different device
context.

Parameter Definitions:

dc : The handle (HDC) of the device context that the
drawing will be drawn.

X,y : The coordinates of location where the drawing will be
drawn.

DScale : The scale value of the drawing. Use 100 for original
size, 50 for half size, 200 for double. If the scale
is 100; a 10 mm (100 dmm) long line will be drawn as
10*DotsPerMilOrig pixels. The DotsPerMilorig is 4 by
default, you can also update it to change the scale.

Ex:
Powercadl.DrawToDc (Imagel.Canvas.Handle, 0,0,100);

Defined in PCDrawing unit

StretchToDc

Procedure StretchToDc (dc,aleft,aTop,aright,aBottom:Integer) ;

Use StretchToDc method to draw the drawing to a different
device context by fitting it to a given rectangular area.

Parameter Definitions:

dc : The handle (HDC) of the device context that the
drawing will be drawn.

aLeft,atop,

aRight,aBottom : The coordinates of rectangle where the
drawing will be drawn.

Ex:

Powercadl.StretchToDc (Imagel.Canvas.Handle,
0,0, Imagel.Width,Imagel.Height);

Defined in PCDrawing unit

39

Print

Procedure Print (TitleInStatusBox:String);

Use Print method to print the drawing to any printer. This
method uses the currently available printer settings.

Parameter Definitions:

TitleInStatusBox : This string will be shown in the printer
status dialog indicating the job title.

Ex:
Powercadl.Print ('PowerCad Drawing');

Defined in PCDrawing unit

PrintByTiling

Procedure PrintByTiling(TitleInStatusBox:String);
Use PrintByTiling method to print the drawing to multiple
pages. This method uses the currently available printer

settings.

Parameter Definitions:

TitleInStatusBox : This string will be shown in the printer
status dialog indicating the job title.
prWmm : The width of the drawing portion that will be printed
in one page.
prHmm : The height of the drawing portion that will be printed
in one page.

Ex:
Powercadl.PrintbyTiling ('PowerCad Drawing', 19,29);

Defined in PCDrawing unit

40

ImportDxf

Procedure ImportDxf (FileName:String;
Layered, IncVertex:Boolean) ;

Use ImportDxf method to import a AutoCad DXf file to your
drawing. The DXf file is imported by using the freeware code of

John Biddiscombe.

Parameter Definitions:

FileName : The FileName of the dxf file to be imported.

Layered : Set this true if you import the dxf objects in their
own layers. When it is false, the objects will be
all in one layer called DXFLayer.

IncVertes: Set this true if you want to import vertex objects.

Ex:
PowerCadl.ImportDXF ('c:\graphs\House.dxf',False,False);

Defined in PCDrawing unit

Clear

Procedure Clear (LayerNbr:Integer);

Use Clear method to remove all objects of one layer or all
drawing.

Parameter Definitions:

LayerNbr : The list index of the layer to be cleared. Use 0 for
all drawing.

Ex:
PowerCadl.Clear (0) ;

Defined in PCDrawing unit

41

HitTestModPoint

Function HitTestModPoint (x,y:Integer) :TModPoint;

Use HitTestModPoint to learn if any modification point is in
the location of x,y.

Parameter Definitions:

x,y : The coordinates of the hit test point in dmm unit.

Return Value : The class reference of the ,mod-point that
stands in x,y. Returns nil if there is no mod-point in the
specified location.

Ex:

procedure TForml.PowerCadlSurfaceTrace (Sender: TObject;
Shift: TShiftState;
X, Y: Integer);
var mp: TModPoint;
begin
mp := Powercadl.HittestModPoint (x,vy);
if assigned(mp) then
PowerCadl.Cursor := crCross
else
PowerCadl.Cursor = crDefault;
end;

Defined in PCDrawing unit

CopyToClipBoard

Procedure CopyToClipBoard;

Use CopyToClipBoard method to copy the selected objects to the
clipboard. The objects are copied in PowerCad streaming format
and Metafile format.

Ex:
PowerCadl.CopyToClipboard;

Defined in PCDrawing unit

CutToClipBoard

Procedure CutToClipBoard;

Use CutToClipBoard method to cut the selected objects to the
clipboard. The objects are copied in PowerCad streaming format
and Metafile format.

Ex:
PowerCadl.CutToClipboard;

Defined in PCDrawing unit

42

PasteFromClipBoard

Procedure PasteFromClipBoard(LayerNbr: Integer);

Use PasteFromClipBoard method to paste the contents of the
clipboard to the drawing.Powercad first checks if any data in
Powercad Streaming Format is in the clipboard. If PowerCad Data
exists then PowerCad imports these objects to the drawing. If
no PowerCad data exists in the clipboard, then PowerCad imports
the metafile data if exists any.

Parameter Definitions:

LayerNbr : The list index of the layer where the clipboard
data will be pasted.

Ex:
PowerSadl.PasteFromClipboard (Powercadl.Activelayer) ;

Defined in PCDrawing unit

FindFigureByName

Function FindFigureByName (FigName:String) :TFigure;

Use FindFigureByName to get the object reference of a figure
with its figure name.

Parameter Definitions:

FigName : The name of the figure
Return Value : The object reference of the figure.
Ex:

var Fig: TFigure;

Fig := PowerCadl.FindFigureByName ('Line01");
Fig.Color := clRed;

Defined in PCDrawing unit

RefreshPropertyPage

Procedure RefreshPropertyPage;virtual;
Use RefreshPropertyPage to refresh the content of the object

inspector (Property Page).

Ex:
PowerCadl.RefreshPropertyPage

Defined in PCDrawing unit

43

AddCustomProperty

Procedure AddCustomProperty (BlockName:String;
CustomProp:TProperty) ;

Use AddCustomProperty to add custom properties to the property
page of a block class. When you add a custom property to a
block class, all instances of that block will have the custom
property in its property page. By using the OnPropertyChanged
event you can get the data that the user has entered to this
property.

Parameter Definitions:

BlockName : The name of the block that the property will be
added.

CustomProp : The object reference of the custom property.

Ex:

// This code, first creates a string property named specie
// with a default value 'Bird'. Then this property is
// registered to the block named 'Dove'.

var cProp: TProperty;

cProp := TStringProperty.Create('Specie', false, 'Bird');
PowerCadl.AddCustomProperty ('Dove', cProp) ;

Defined in PCDrawing unit

GetCustomPropList

Function GetCustomPropList (BlockName:String) :TList;
Use GetCustomProplList to get the TList object that stores the
custom properties of a block class. The returning TList is the

internally created list, so you shouldn’t free it in anyway.

Parameter Definitions:

BlockName : The name of the block that the property list will
be gathered.

Return Value: The object reference of the Custom Property List.
Ex:

List := PowerCadl.GetCustomPropList ('Dove');

if assigned(List) then

ShowMessage ('Dove Block has '+ inttostr (List.Count) +
'custom properties.');

Defined in PCDrawing unit

44

Line

Function Line (LayerNbr,x1,vyl,x2,v2,w,s,c,row: integer;
Select:Boolean) :TFigHandle;

Use Line method to create a Line figure and add it to Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.

x1,yl1,x2,y2 : The figure coordinates in dmm unit.
w : The pen width of the figure.

s : The pen style of the figure.It can have following values.
Solid Pen // ord(psSolid)

Dash Pen // ord(psDash)

DashDot Pen // ord(psDashDot)

DashDotDot Pen // ord(psDashDotDot)

Clear Pen // ord(psClear)

Inside Frame Pen // ord(psinsideFrame)

U'lnhb)l\)l—'o

c : The pen color of the figure.

row : The row style of the figure. It can have following
values.
0: No Rows // ord(rsNone)

Right Solid // ord(rsRightSolid)

Left Solid // ord(rsLeftSolid)

Both Solid // ord(rsBothSolid)

Right Light // ord(rsRightLight)

Left Light // ord(rsLeftLight)

Both Light // ord(rsBothLight)

ocuUbdWwWNRK

Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:
FigHandle := Powercadl.Line(0,100,100,200,100,1,0rd(psSolid),
clRed, ord(rsNone), true) ;
TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

45

PolyLine

Function PolyLine (LayerNbr:Integer; points:array of TPoint;
nbrPoint,w,s,c, row,brs,brc:integer;
Closed, Select:Boolean) :TFigHandle;

Use PolyLine method to create a PolyLine figure and add it to
Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
points : The array that is storing the points of the figure in
dmm unit. Must be 0 based.
nbrPoint : The number of the points in the array.
w : The pen width of the figure.
s : The pen style of the figure.It can have following values.
Solid Pen // ord(psSolid)
Dash Pen // ord(psDash)
DashDot Pen // ord(psDashDot)
DashDotDot Pen // ord(psDashDotDot)
Clear Pen // ord(psClear)
Inside Frame Pen // ord(psinsideFrame)
c : The pen color of the figure.
row : The row style of the figure. It can have following
values.
0: No Rows // ord(rsNone)
: Right Solid // ord(rsRightSolid)
Left Solid // ord(rsLeftSolid)
Both Solid // ord(rsBothSolid)
Right Light // ord(rsRightLight)
Left Light // ord(rsLeftLight)
Both Light // ord(rsBothLight)
brs : The brush style of the figure. It can have following
values.
0: Solid Brush // ord(bsSolid)
Clear Brush // ord(bsClear)
Horizontal hatch // ord(bsHorizontal)
Vertical hatch // ord(bsVertical)
FDiagonal hatch // ord(bsFDiagonal)
BDiagonal hatch // ord(bsBDiagonal)
Cross Hatch // ord(bsCross)
Diagonal Cross Hatch // ord(bsDiagCross)
brc : The brush color of the figure.
Select : Set this true if you want the figure to be selected
after it is added to Powercad.
Return Value: The handle of the created figure.

unhwl\n—-o

O\U'lvhwl\)l—‘

\lO\U‘lnhwl\)l—‘

Ex:

Points[0] := Point (100,100);
Points[1l] := Point (200,100);

Points[2] := Point (200,200);

FigHandle := Powercadl.PolyLine(0,Points,3,1,ord(psSolid),
clRed, ord (rsNone),ord (bsSolid), clBlue, true,
true);

TPolyLine (FigHandle) .ConvertToBezier;

Defined in PCDrawing unit

46

Vertex

Function Vertex (LayerNbr,x,y: integer;
Select:Boolean) :TFigHandle;

Use Vertex method to create a Vertex figure and add it to
Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.

x,y : The figure coordinates in dmm unit.

Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.
Ex:

FigHandle := Powercadl.Vertex (0,100,100, true);
TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

47

Rectangle

Function Rectangle (LayerNbr,x1,vl,x2,y2,w,s,c,

brs,brc:integer;Select:Boolean) :TFigHandle;

Use Rectangle method to create a Rectangle figure and add it to

Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
Xl,yl x2,y2 : The figure coordinates in dmm unit.
w : The pen width of the figure.
s : The pen style of the figure.It can have following values.
Solid Pen // ord(psSolid)
Dash Pen // ord(psDash)
DashDot Pen // ord(psDashDot)
DashDotDot Pen // ord(psDashDotDot)
Clear Pen // ord(psClear)
Inside Frame Pen // ord(psinsideFrame)
c : The pen color of the figure.
brs : The brush style of the figure. It can have following
values.
0: Solid Brush // ord(bsSolid)
Clear Brush // ord(bsClear)
Horizontal hatch // ord(bsHorizontal)
Vertical hatch // ord(bsVertical)
FDiagonal hatch // ord(bsFDiagonal)
BDiagonal hatch // ord(bsBDiagonal)
Cross Hatch // ord(bsCross)
Diagonal Cross Hatch // ord(bsDiagCross)
brc : The brush color of the figure.

U'lnhb)l\)l—'o

\lO\U‘lnhwl\)l—'

Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:

FigHandle := Powercadl.Rectangle(0,10,10,70,70,1,
ord(psSolid), clRed,
ord(bsSolid), clBlue, true);

TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

48

Ellipse

Function Ellipse (LayerNbr, cx,cy, lenA, lenB,Angle,w, s, c,
brs,brc:integer;Select:Boolean) :TFigHandle;

Use Ellipse method to create an Ellipse figure and add it to
Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
cx,cy : The figure center coordinates in dmm unit.
LenA,Lenb : The horizontal and Vertical Radius of ellipse.
Angle: The angle of the ellipse. It should be in 1/10 degrees.
For 10 degrees use a 100.
w : The pen width of the figure.
s : The pen style of the figure.It can have following values.
Solid Pen // ord(psSolid)
Dash Pen // ord(psDash)
DashDot Pen // ord(psDashDot)
DashDotDot Pen // ord(psDashDotDot)
Clear Pen // ord(psClear)
Inside Frame Pen // ord(psinsideFrame)
c : The pen color of the figure.
brs : The brush style of the figure. It can have following
values.
0: Solid Brush // ord(bsSolid)
: Clear Brush // ord(bsClear)
Horizontal hatch // ord(bsHorizontal)
Vertical hatch // ord(bsVertical)
FDiagonal hatch // ord(bsFDiagonal)
BDiagonal hatch // ord(bsBDiagonal)
Cross Hatch // ord(bsCross)
Diagonal Cross Hatch // ord(bsDiagCross)
brc : The brush color of the figure.

unhwl\n—-o

~1mu1.l>w|\n—-

Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:

FigHandle := Powercadl.Ellipse(0,10,10,60,120,450,1,
ord(psSolid), clRed,
ord(bsSolid), clBlue, true);

TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

49

Ellipse3p

Function Ellipse3p (LayerNbr,cx,cy,x1,yl,x2,y2,lenA,lenB, Angle,
w,s,c,brs,brc:integer;Select:Boolean) :TFigHandle;

Use Ellipse3p method to create an Ellipse figure from center
point and 2 control points. The control points define the

radiuses and angle of the ellipse.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
cx,cy : The figure center coordinates in dmm unit.
x1,y1,x2,y2 : The figure control points coordinates in dmm
unit.

w : The pen width of the figure.
s : The pen style of the figure.It can have following values.
Solid Pen // ord(psSolid)
Dash Pen // ord(psDash)
DashDot Pen // ord(psDashDot)
DashDotDot Pen // ord(psDashDotDot)
Clear Pen // ord(psClear)
Inside Frame Pen // ord(psinsideFrame)
c : The pen color of the figure.
brs : The brush style of the figure. It can have following

values.

0: Solid Brush // ord(bsSolid)

: Clear Brush // ord(bsClear)

Horizontal hatch // ord(bsHorizontal)
Vertical hatch // ord(bsVertical)
FDiagonal hatch // ord(bsFDiagonal)
BDiagonal hatch // ord(bsBDiagonal)
Cross Hatch // ord(bsCross)
Diagonal Cross Hatch // ord(bsDiagCross)
brc : The brush color of the figure.

unhwl\n—-o

~1mu1.l>w|\n—-

Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:

FigHandle := Powercadl.Ellipse3p(0,100,100,100,60,140,100,1
ord(psSolid), clRed,
ord(bsSolid), clBlue, true);

TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

50

Circle

Function Circle (LayerNbr, cx,cy,Radius,w, s, c,
brs,brc:integer;Select:Boolean) :TFigHandle;

Use Circle method to create a Circle figure and add it to
Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
cx,cy : The figure center coordinates in dmm unit.
Radius : The Radius of the circle.
w : The pen width of the figure.
s : The pen style of the figure.It can have following values.
Solid Pen // ord(psSolid)
Dash Pen // ord(psDash)
DashDot Pen // ord(psDashDot)
DashDotDot Pen // ord(psDashDotDot)
Clear Pen // ord(psClear)
Inside Frame Pen // ord(psinsideFrame)
c : The pen color of the figure.
brs : The brush style of the figure. It can have following
values.
0: Solid Brush // ord(bsSolid)
Clear Brush // ord(bsClear)
Horizontal hatch // ord(bsHorizontal)
Vertical hatch // ord(bsVertical)
FDiagonal hatch // ord(bsFDiagonal)
BDiagonal hatch // ord(bsBDiagonal)
Cross Hatch // ord(bsCross)
Diagonal Cross Hatch // ord(bsDiagCross)
brc : The brush color of the figure.

U'lnhb)l\)l—'o

\lO\U‘lnhwl\)l—‘

Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:

FigHandle := Powercadl.Circle(0,50,100,60,1,
ord(psSolid), clRed,
ord(bsSolid), clBlue, true);

TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

51

Arc

Function Arc(LayerNbr, cx,cy,Radius,al,a2,w,s,c,brs,brc,
ArcStyle:integer;Select:Boolean) :TFigHandle;

Use Arc method to create an Arc figure and add it to Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
cx,cy : The figure center coordinates in dmm unit.
Radius : The Radius of the arc.
al: The starting angle of the arc. It should be in degree unit.
a2: The ending angle of the arc. It should be in degree unit.
w : The pen width of the figure.
s : The pen style of the figure.It can have following values.
Solid Pen // ord(psSolid)
Dash Pen // ord(psDash)
DashDot Pen // ord(psDashDot)
DashDotDot Pen // ord(psDashDotDot)
Clear Pen // ord(psClear)
Inside Frame Pen // ord(psinsideFrame)
c : The pen color of the figure.
brs : The brush style of the figure. It can have following
values.
0: Solid Brush // ord(bsSolid)
: Clear Brush // ord(bsClear)
Horizontal hatch // ord(bsHorizontal)
Vertical hatch // ord(bsVertical)
FDiagonal hatch // ord(bsFDiagonal)
BDiagonal hatch // ord(bsBDiagonal)
Cross Hatch // ord(bsCross)
Diagonal Cross Hatch // ord(bsDiagCross)
brc : The brush color of the figure.
ArcStyle : The style of the arc. It can have following values.
0: Normal Arc
1: Pie Arc
2: Chord Arc
Select : Set this true if you want the figure to be selected
after it is added to Powercad.

U'lnhb)l\)l—'o

\lO\U‘lnhwl\)l—‘

Return Value: The handle of the created figure.

Ex:

FigHandle := Powercadl.Arc(0,50,100,60,0,270,1,
ord(psSolid), clRed,
ord(bsSolid), clBlue, true);

TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

52

TextOut

Function TextOut (LayerNbr,x1l,yl,Angle,Height:integer;
ratio: double; aText,aFontName:String;
FontCharset:Byte;Select:Boolean) :TFigHandle;

Use TextOut method to create a Text figure and add it to
Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.

x1,yl : The figure center coordinates in dmm unit.

Angle : The angle of the text. It should be in 1/10 degree
unit. For 10 degrees use a 100.

Height : The height of the font in dmm unit.

ratio : The ratio of width to height. Use 0.9 for a normal
ratio.

aText: The text that will be drawn.

aFontname: The name of the font of the text.

FontCharset: The character set number of the text. Use 0 for

default.

Select : Set this true if you want the figure to be selected

after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:
FigHandle := Powercadl.TextOut(0,50,100,0,40,0.9,
'Hello World', 'Arial',
0, true);
TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

53

InsertBitmap

Function InsertBitmap (LayerNbr, x,y, :integer; FName:String;
Transparent, Select:Boolean) :TFigHandle;

Use InsertBitmap method to create a Bitmap Object figure from
the disk and add it to Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
x,y : The figure center coordinates in dmm unit.
FName : The file name of the bitmap with its path information.
FName : Set this true if you want the bitmap drawn transparent.
Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:
FigHandle := Powercadl.InsertBitmap (0,50,100, 'c:\test.bmp',
true, true);
TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

InsertwWMF

Function InsertWMf (LayerNbr,x,y, :integer; FName:String;
Select:Boolean) :TFigHandle;

Use InsertWmf method to create a WMFObject figure from the disk
and add it to Powercad.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
x,y : The figure center coordinates in dmm unit.
FName : The file name of the metafile with its path
information.
Select : Set this true if you want the figure to be selected
after it is added to Powercad.

Return Value: The handle of the created figure.

Ex:
FigHandle := Powercadl.InsertWmf (0,50,100, 'c:\test.wmf"',
true);
TFigure (FigHandle) .LockMove := True;

Defined in PCDrawing unit

54

ImportWMF

Function ImportWMF (LayerNbr:integer; FName:String;
Select:Boolean) :TFigHandle;

Use ImportWmf method to import a Windows metafile as editable
PowerCad objects to the drawing from a disk file.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
FName : The file name of the metafile with its path
information.
Select : Set this true if you want the inserted figures to be
selected.

Return Value: The handle of the created figure group that
includes the WMF figures..

Ex:
FigHandle := Powercadl.ImportWmf (0, 'c:\test.wnf', true);
TFigureGrp (FigHandle) .Combined := True;

Defined in PCDrawing unit

ImportMetafile

Function ImportMetafile (LayerNbr:integer; mf:TMetafile;
Select:Boolean) :TFigHandle;

Use ImportMetafile method to import a Windows metafile as
editable PowerCad objects to the drawing from an already

created TMetafile object.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
mf: The Tmetafile object that includes the metafile.

Select : Set this true if you want the inserted figures to be
selected.

Return Value: The handle of the created figure group that
includes the WMF figures..

Ex:
FigHandle := Powercadl.ImportMetafile (O,
Imagel.Picture.Metafile ,true);
TFigureGrp (FigHandle) .Combined := True;

Defined in PCDrawing unit

55

AddCustomFigure

Function AddCustomFigure (LayerNbr:integer;CustomFig:TFigure;
Select:Boolean) :TFigHandle;

Use AddCustomFigure method to add a TFigure descendant that is
already created.

Parameter Definitions:

LayerNbr : The list index of the layer that the figure will
be inserted.
CustomFig: The object reference of the custom figure.
Select : Set this true if you want the inserted figures to be
selected.

Return Value: The handle of the added custom figure.

Ex:
cFig := TFrame.Create(10,10,60,70,1,0rd(psSolid), clRed,
ord(bsSolid), clBlue,
PowerCadl.Layers|[0],
dsNormal, PowerCadl) ;
Powercadl.AddCustomFigure (0, cFig, true) ;

Defined in PCDrawing unit

RunMacro

Procedure RunMacro (Macro:TStringList);

Use RunMacro method to execute a PSCL script given as a
stringlist.

Parameter Definitions:

Macro : The stringlist that includes the script.

Ex:
Macro := TStringList.Create;
Macro.LoadFromFile ('c:\macros\test.cmf') ;
Powercadl .RunMacro (Macro) ;
Macro. free;

Defined in PCDrawing unit

56

RunMacroText

Procedure RunMacroText (Macro: String);
Use RunMacroText method to execute a PSCL script given as a
string. The script lines should be separated with return

character.

Parameter Definitions:

Macro : The string that includes the script.

Ex:
Macro := 'Begin'+#13+'Refresh; '+#13+'End;"';
Powercadl .RunMacroText (Macro) ;

Defined in PCDrawing unit

RunMacroByFileName

Procedure RunMacroByFilename (MacroName: String);

Use RunMacroByFileName method to execute a PSCL script given in
a text file.

Parameter Definitions:

MacroName : The filename of the macro with its path
information.

Ex:
Powercadl.RunMacroByFileName ('c:\macros\test.cmf') ;;

Defined in PCDrawing unit

AddPSCLConstant

Procedure AddPSCLConstant (ConstName:String; Value:Variant);

Use AddPSCLConstant method to add a constant expression to the
PSCL language.

Parameter Definitions:

ConstName : The string that will represent the constant value.

Value : The value of the constant.

Ex:
PowerCadl.AddPsclConstant ('PI', 3.14);
PowerCadl.AddPsclConstant ('Err', 'There is an error');

Defined in PCDrawing unit

57

AddPSCLProcedure

Procedure AddPSCLProcedure (ProcName:String;
ProcAddr:TProcType;
const Params: array of Byte);

Use AddPSCLProcedure method to add a procedure expression to
the PSCl language. This procedure expression will represent a

real code (function) in the application.

Parameter Definitions:

ProcName : The string that will represent the procedure call.

ProcAddr : The address of the real function that will be
execute when it is called within the script. This
function should be in a specific prototype.

Params : A Byte Array indicating the parameters of the script
procedure.

Ex:

// The real procedure
function MyXProc(slf:TObject;var s:array of variant) :variant;
Begin
// Implementation
End;

PowerCadl.AddPsclProc ('XProc',MyXProc, [0,0]) ;

Defined in PCDrawing unit

58

AddPSCLFunction

Procedure AddPSCLFunction (ProcName:String;
ProcAddr:TProcType;
const Params: array of Byte);

Use AddPSCLFunction method to add a function expression to the
PSCL language. This function expression will represent a real

code (function) in the application.

Parameter Definitions:

ProcName : The string that will represent the fucntion call.

ProcAddr : The address of the real function that will be
executed when it is called within the script. This
function should be in a specific prototype.

Params : A Byte Array indicating the parameters of the script
function.

Ex:

// The real function
function MyXFunc(slf:TObject;var s:array of variant) :variant;
Begin
// Implementation
End;

PowerCadl.AddPsclFunction ('XFunc',MyXFunc, [0,0]);

Defined in PCDrawing unit

LoadPlugins

Procedure LoadPlugins;

Use LoadPlugins method to load the Plugin DLLs in the plugin
directory. You can make any plugin call before you load the
plugins. Normally load plugins in the OnCreate event handler of
your application’s main form.

Ex:

PowerCadl.LoadPlugins;

Defined in PCDrawing unit

59

UnLoadPlugins

Procedure UnLoadPlugins;

Use UnLoadPlugins method to unload the Plugin DLLs that are
loaded. Make this call when you don’t need the plugins anymore.
Normally unload the plugins in the OnClose event handler of
your applications’s main form.

Ex:

PowerCadl.UnLoadPlugins;

Defined in PCDrawing unit

GetPlugins

Function GetPlugins:TStringlist;
Use GetPlugins method to get the list of currently loaded
plugins. The list includes the names of the plugins in their

list order.

Parameter Definitions:

Return Value : The Stringlist that includes the list of the
plugin names. This returning list is created by
the function itself, but should be freed by the
application after it is used. The list is
returned nil if there is no plugin loaded.

Ex:

plglist := PowerCadl.GetPlugins;

if assigned(plglist) then

begin
CreatePluginMenuFromList (plgList) ;
plglist.Free;

end;

Defined in PCDrawing unit

60

GetPluginVerbs

Function GetPluginVerbs (PluginIdx:Integer) :String;

Use GetPluginVerbs method to get the list of the verbs of a
currently loaded plugin.

Parameter Definitions:

PluginIdx : The list index of the plugin whose verbs will be

returned.

Return Value : A string that includes the names of the verbs in
their list order separated by a return
character.IIt is returned blank whe there is no
verb to list.

Ex:

var VerbList: TStringList;
Verbs: String;

verbs := Powercadl.GetPluginVerbs (0) ;

if Verbs <> '' then

begin
VerbList := TStringlist.Create;
VerbList.text := Verbs;
CreateVerbsMenuFromList (VerbList) ;
VerbList.free;

end;

Defined in PCDrawing unit

DoPluginVerb

Procedure DoPluginVerb (PluginIdx,VerbIdx:Integer);
Use DoPluginVerb method to execute a verb of a plugin.

Parameter Definitions:

PluginIdx : The list index of the plugin whose verb will be
executed.
VerbIdx : The list index of the verb that vill be executed.

Ex:

Powercadl.DoPluginVerb (0, 0) ;

Defined in PCDrawing unit

61

PrintPreview

Procedure PrintPreview;
Use PrintPreview method to preview a drawing before printing.
Ex:

Powercadl.PrintPreview;

Defined in PCDrawing unit

ShowPropertyWindow

Procedure ShowPropertyWindow;

Use ShowPropertyWindow method to show the property page (object
inspector) .

Ex:

Powercadl.ShowPropertyWindow;

Defined in PCDrawing unit

PrintMessage

Procedure PrintMessage (Mes:String);
Use PrintMessage method to write a string message in the bottom
panel of the PowerCad. It will be cleared in the first refresh.

So write the message after you have made your refresh.

Parameter Definitions:

Mes : The message that will be printed.
Ex:

Powercadl.PrintMessage ('The figure is rotated');

Defined in PCDrawing unit

62

RegisterFigureClass

Procedure RegisterFigureClass (Fig:TFigureClass) ;
Use RegisterFigureClass method to register the custom figure
that you have inherited from TFigure. The custom figures can be

drawn in PowerCad after they are registered.

Parameter Definitions:

Fig : The class name of the custom figure.
Ex:

Powercadl.RegisterFigureClass (TFrame) ;

Defined in PCDrawing unit

ExecuteCommand

Procedure ExecuteCommand (Command:String);
Use ExecuteCommand method to execute a cad command written in a
string. The commandbar also uses this method to execute the

commands written in itself.

Parameter Definitions:

Command : The string representation of the command to be
executed.

Ex:

Powercadl .ExecuteCommand ('Line 0 0 100 100"');

Defined in PCDrawing unit

ExecuteTBCommand

Procedure ExecuteTBCommand (CommandID:Integer) ;
Use ExecuteTBCommand method to execute toolbar commands. A
toolbar command is an ID that represents a specific action in

PowerCad that don’t need a parameter for starting.

Parameter Definitions:

CommandID : The id of the command to be executed.
For a list of TB commands see the PCTypesUtils
unit.

Ex:

Powercadl .ExecuteTBCommand (cNew) ;

Defined in PCDrawing unit

63

CountBlock

Function CountBlock (BlockName:String) :integer;

Use CountBlock method to get the number of a specific block in
the drawing.

Parameter Definitions:

BlockName : The name of the block that will be counted.
Ex:

Powercadl.CountBlock ('Vane');

Defined in PCDrawing unit

GetSelectionHandles

Function GetSelectionHandles (var Handles: Array of
TfigureHandle) :integer;

Use GetSelectionHandles method to get the handles of the
figures that are selected. This method is designed for the DLL
version so you should prefer the Selection property instead of
using this method.

Parameter Definitions:

Handles : The array that is including the selection handles.
Return Value: The count of the selected figures.
Ex:

var Handles: array [0...254] of Integer;

cnt := Powercadl.GetSelectionHandles (Handles) ;
for i := 0 to cnt-1 do
begin
TFigure (Handles[i]) .Color := clRed;
end;

Defined in PCDrawing unit

64

GetBlockFileNames

Procedure GetBlockFileNames (List: TStringList);
Use GetBlockFileNames method to get the file names of the
blocks that are in the block directory of your application. The

file names includes the path information also.

Parameter Definitions:

List : The stringlist that the block file names will be written
to. It should be created and freed by the application.

Ex:
List := TSTringlist.Create;
Powercadl .GetBlokFileNames (List) ;
for a := 0 to List.count -1 do
begin
Listboxl.Add(List[i]);
end;

Defined in PCDrawing unit

GetVersion

Function GetVersion:Integer;

Use GetVersion method to get major and minor version of the
current code.

Parameter Definitions:

Return Value : The first number of the returned integer is the
major version and the second number is the minor
version. For instance; if the majaor version is
2 and minor version is 1 then the returned
integer is 21.

Ex:

Ver := PowerCadl.GetVersion;

Defined in PCDrawing unit

65

GetBuildNumber

Function GetBuildNumber:Integer;

Use GetBuildNumber method to get the build number of the
current version.

Parameter Definitions:

Return Value : The build number.
Ex:

bn := PowerCadl.GetBuildNumber;

Defined in PCDrawing unit

GetSlcPenStyle

Function GetSlcPenStyle:Integer;

Use GetSlcPenStyle method to get the pen style of the currently
selected figure or figures.

Parameter Definitions:

Return Value : The pen style of the currently selected figures.
If the selection count is bigger than 1 and if
the pen styles of the selected figures are
different from each other then returning value
is -1.

Ex:
val := PowerCadl.GetSlcPenStyle;

if val <> -1 then
PowerCadl.PrintMessage ('PenStyle: '+ inttostr(val));

Defined in PCDrawing unit

66

GetSlcPenWidth

Function GetSlcPenWidth:Integer;

Use GetSlcPenWidth method to get the pen width of the currently
selected figure or figures.

Parameter Definitions:

Return Value : The pen width of the currently selected figures.
If the selection count is bigger than 1 and if
the pen widths of the selected figures are
different from each other then returning value
is -1.

Ex:

val := PowerCadl.GetSlcPenWidth;
if val <> -1 then
PowerCadl.PrintMessage ('PenWidth: '+ inttostr(val));

Defined in PCDrawing unit

GetSlcPenColor

Function GetSlcPenColor:Integer;

Use GetSlcPenColor method to get the pen color of the currently
selected figure or figures.

Parameter Definitions:

Return Value : The pen color of the currently selected figures.
If the selection count is bigger than 1 and if
the pen colors of the selected figures are
different from each other then returning value
is -1.

Ex:
val := PowerCadl.GetSlcPenColor;

if val <> -1 then
PowerCadl.PrintMessage ('PenColor: '+ inttostr(val));

Defined in PCDrawing unit

67

GetSlcRowStyle

Function GetSlcRowStyle:Integer;

Use GetSlcRowStyle method to get the row style of the currently
selected figure or figures.

Parameter Definitions:

Return Value : The row style of the currently selected figures.
If the selection count is bigger than 1 and if
the row styles of the selected figures are
different from each other then returning value
is -1.

Ex:

val := PowerCadl.GetSlcRowStyle;
if val <> -1 then
PowerCadl.PrintMessage ('RowStyle: '+ inttostr(val));

Defined in PCDrawing unit

GetSlcBrushColor

Function GetSlcBrushColor:Integer;

Use GetSlcBrushColor method to get the brush color of the
currently selected figure or figures.

Parameter Definitions:

Return Value : The brush color of the currently selected
figures. If the selection count is bigger than 1
and i1if the brush colors of the selected figures
are different from each other then returning
value is -1.

Ex:

val := PowerCadl.GetSlcBrushColor;
if val <> -1 then
PowerCadl.PrintMessage ('BrushColor: '+ inttostr(val));

Defined in PCDrawing unit

68

GetSlcBrushStyle

Function GetSlcBrushStyle:Integer;

Use GetSlcBrushStyle method to get the brush style of the
currently selected figure or figures.

Parameter Definitions:

Return Value : The brush style of the currently selected
figures. If the selection count is bigger than 1
and i1if the brush styles of the selected figures
are different from each other then returning
value is -1.

Ex:

val := PowerCadl.GetSlcBrushStyle;
if val <> -1 then
PowerCadl.PrintMessage ('BrushStyle: '+ inttostr(val));

Defined in PCDrawing unit

GetSlcFont

Function GetSlcFont:TFont;

Use GetSlcFont method to get the font of the currently selected
figure or figures.

Parameter Definitions:

Return Value : The font of the currently selected
figures. If the selection count is bigger than 1
and if the fonts of the selected figures
are different from each other then returning
value is nil. The returning font information
only is for the fontname, fontstyles and font
charset.

Ex:

fnt := PowerCadl.GetSlcDont;
if fnt <> nil then
PowerCadl.PrintMessage ('FontName: '+ fnt.Name) ;

Defined in PCDrawing unit

69

SetOptionHints

Procedure SetOptionHints (HintList:TStringList);

Use SetOptionHints method to set the hints of the option
buttons in the bottom panel.

Parameter Definitions:

HintLits : The StringList that includes the hints of the
buttons. They number of the items in the stringlist
should be 6. The hintlist should be created and
freed by the application.

Ex:

HList := Tstringlist.Create;
HList.Add('Ruler Visible');

HList.Add('Grids Visible');
HList.Add('Guides Visible');
HList.Add('Snap To Grids');
HList.Add('Snap To Guides');
HList.Add('Grids Visible');
HList.Add('Snap To Guides');

PowerCadl.SetOptionHints (hList) ;
hlList.free;

Defined in PCDrawing unit

RegisterDlg

Procedure RegisterDlg(Value:Pointer);

Use RegisterDlg method to register the custom dialogs that are
inherited from TDlgBase. If a dialog is registered its
Syncronize method is called from PowerCad when there is a
change. Normally you shouldn’t use this method, because a
dialog is registered by the TDlgbase code when the CadControl
property is assigned.

Parameter Definitions:

Value : The object reference of the Dialog.
Ex:

PowerCadl.RegisterDlg (MyCustomDlg) ;

Defined in PCDrawing unit

70

UnRegisterDlg

Procedure UnRegisterDlg(Value:Pointer);

Use UnRegisterDlg method to unregister the custom dialogs that
are inherited from TDlgBase. Normally you shouldn’t use this
method, because a dialog is unregistered by the TDlgbase code
when the CadControl property is assigned nil.

Parameter Definitions:

Value : The object reference of the Dialog.
Ex:

PowerCadl.UnRegisterDlg (MyCustomDlg) ;

Defined in PCDrawing unit

RegisterBar

Procedure RegisterBar (Value:Pointer);

Use RegisterBar method to register the custom toolbars that are
inherited from TBarBase. If a toolbar is registered its
Syncronize method is called from PowerCad when there is a
change. Normally you shouldn’t use this method, because a
toolbar is registered by the TBarBase code when the CadControl
property is assigned.

Parameter Definitions:

Value : The object reference of the Toolbar.
Ex:

PowerCadl.RegisterBar (MyCustomBar) ;

Defined in PCDrawing unit

UnRegisterBar

Procedure UnRegisterBar (Value:Pointer);

Use UnRegisterBar method to unregister the custom toolbars that
are inherited from TBarBase. Normally you shouldn’t use this
method, because a toolbar is unregistered by the TBarBase code
when the CadControl property is assigned nil.

Parameter Definitions:

Value : The object reference of the Toolbar.
Ex:

PowerCadl.UnRegisterBar (MyCustomBar) ;

Defined in PCDrawing unit

71

Events:

OnZoomIn

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnZoomIn: TNotifyEvent;

Occures when the user presses the ZoomIn button of the bottom
panel. Use OnZoomIn event handler to implement any special
processing that should occur after the ZoomIn is executed.

Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlZoomIn (Sender: TObject);
begin

TPowerCad (Sender) .PrintMessage ('Zoom In Executed');
end;

Defined in PCPanel unit

OnZoomOut

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnZoomOut: TNotifyEvent;

Occures when the user presses the ZoomOut button of the bottom
panel. Use OnZoomOut event handler to implement any special
processing that should occur after the ZoomOut is executed.

Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlZoomOut (Sender: TObject) ;
begin

TPowerCad (Sender) .PrintMessage ('Zoom Out Executed');
end;

Defined in PCPanel unit

72

OnZoomArea

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnZoomArea: TNotifyEvent;

Occures when the user presses the ZoomArea button of the bottom
panel. Use OnZoomArea event handler to implement any special
processing that should occur after the ZoomArea button is
clicked. Normally ZoomArea is executed by the zoom tool after
the user selects the area, so the event is raised before the
ZoomArea 1is executed.

Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlZoomArea (Sender: TObject);
begin

TPowerCad (Sender) .PrintMessage ('Zoom Area Tool is Active');
end;

Defined in PCPanel unit

OnZoomFitToWindow

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnZoomFitToWindow: TNotifyEvent;

Occures when the user presses the FitToWindow button of the
bottom panel. Use OnZoomFitToWindow event handler to implement
any special processing that should occur after the FitToWindow
zooming 1s executed.

Sender is the cad control that raises this event.

Ex:

procedure TForml.PowerCadlFitToWindow (Sender: TObject) ;
begin

TPowerCad (Sender) .PrintMessage ('The page is fit To Window') ;
end;

Defined in PCPanel unit

73

OnScale

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnScale: TNotifyEvent;

Occurs when the drawing’s scale property is changed. Use
OnScale event handler to implement any special processing that
should occur as a result of changing the view scale of the

page.
Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlScale (Sender: TObject);
var CadControl: TPowercad;
begin
CadControl := Sender as TPowercad;
with CadControl do
PrintMessage ('CurrentScale="+InttoStr (Scale));
end;

Defined in PCDrawBox unit

OnSurfaceTrace

type TMouseTraceEvent = procedure (Sender: TObject;
Shift:TShiftState;
X,Y: Integer) of object;
Property OnSurfaceTrace: TMouseTraceEvent;

Occurs when the user moves the mouse pointer while the mouse
pointer is over the PowerCad drawing surface. This event is a
simulation of OnMouseMove event. The difference is that this
event occurs on the drawing area of the control and the raising
coordinates are in dmm unit. Use OnSurfaceTrace event handler
to respond when the mouse pointer moves after the cad control
has captured the mouse.

Sender is the cad control that raises this event. Shift is used
to determine that state of shift keys, x and y is the current
coordinates of the mouse cursor in dmm unit.

Ex:

procedure TForml.PowerCadlSurfaceTrace (Sender: TObject; Shift:
TShiftState;X, Y: Integer);
var CadControl: TPowercad;
fig: TFigure;

begin
CadControl := Sender as TPowercad;
fig := CadControl.CheckByPoint (CadControl.Activelayer, x,VY);

if assigned(fig) then
CadControl.PrintMessage ('Mouse is over '+ fig.name)
else
CadControl.PrintMessage ('");
end;

Defined in PCDrawBox unit

74

OnSurfacePush

type TMousePushEvent = procedure (Sender: TObject;
Button: TMouseButton;
Shift:TshiftState;
X,Y: Integer) of object;
Property OnSurfacePush: TMousePushEvent;

Occurs when the user presses a mouse button with the mouse
pointer over the PowerCad drawing surface. This event is a
simulation of OnMouseDown event. The difference is that this
event occurs on the drawing area of the control and the raising
coordinates are in dmm unit. Use OnSurfacePush event handler to
implement any special processing that should occur as a result
of pressing a mouse button.

Sender is the cad control that raises this event. Shift is used
to determine that state of shift keys, button is used to
determine which button is pressed, x and y is the current
coordinates of the mouse cursor in dmm unit.

Ex:

procedure TForml.PowerCadlSurfacePush(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var CadControl: TPowercad;
begin
CadControl := Sender as TPowercad;
if (CadControl.toolIdx = toSelect)
and (button = mbRight) then
CadControl.Vertex (CadControl.Activelayer,x,y, false);
end;

Defined in PCDrawBox unit

75

OnSurfacePull

type TMousePullEvent = procedure (Sender: TObject;
Button: TMouseButton;
Shift:TshiftState;
X,Y: Integer) of object;
Property OnSurfacePull: TMousePullEvent;

Occurs when the user releases a mouse button that was pressed
with the mouse pointer over the PowerCad drawing surface. This
event is a simulation of OnMouseUp event. The difference 1is
that this event occurs on the drawing area of the control and
the raising coordinates are in dmm unit. Use OnSurfacePull
event handler to implement any special processing that should
occur as a result of releasing a mouse button.

Sender is the cad control that raises this event. Shift is used
to determine that state of shift keys, button is used to
determine which button is released, x and y is the current
coordinates of the mouse cursor in dmm unit.

Ex:

procedure TForml.PowerCadlSurfacePull (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var CadControl: TPowercad;
begin
CadControl := Sender as TPowercad;
if (CadControl.toolIdx = toSelect)
and (button = mbRight) then
CadControl.Vertex (CadControl.Activelayer,x,y, false);
end;

Defined in PCDrawBox unit

OnSurfaceleave

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnSurfacelLeave: TNotifyEvent;

Occurs when the mouse pointer leaves the PowerCad drawing
surface. Use OnSurfaceleave event handler to implement any
special processing that should occur as a result of leaving the
drawing surface.

Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlSurfaceleave (Sender: TObject);
var CadControl: TPowercad;
begin
CadControl := Sender as TPowercad;
CadControl.PrintMessage ('Mouse Leaved the surface');
end;

Defined in PCDrawBox unit

76

OnSurfaceClick

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnSurfaceClick: TNotifyEvent;

Occurs when the user clicks a mouse button over the PowerCad
drawing surface. This event is a simulation of OnMouseClick
event. The difference is that this event occurs on the drawing
area of the control. Use OnSurfaceClick event handler to
implement any special processing that should occur as a result
of clicking the drawing surface.

Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlSurfaceClick(Sender: TObject);
var CadControl: TPowercad;

begin
CadControl := Sender as TPowercad;
CadControl.PrintMessage ('Surface is clicked');
end;

Defined in PCDrawBox unit

OnSurfaceDblClick

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnSurfaceDblClick: TNotifyEvent;

Occurs when the user double clicks a mouse button over the
PowerCad drawing surface. This event is a simulation of
OnMouseDblClick event. The difference is that this event occurs
on the drawing area of the control. Use OnSurfacedblClick event
handler to implement any special processing that should occur
as a result of double clicking the drawing surface.

Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlSurfaceDblClick (Sender: TObject);
var CadControl: TPowercad;
begin
CadControl := Sender as TPowercad;
CadControl.PrintMessage ('Surface is double clicked');
end;

Defined in PCDrawBox unit

77

OnSurfaceDragDrop

type TDropDragEvent = procedure (Sender, Source: TObject;
X, Y: Integer) of object;
Property OnSurfaceDragDrop: TDropDragEvent;

Occurs when the user drops an object being dragged over the
Powercad Drawing Surface. This event is a simulation of
OnDragDrop event. The difference is that this event occurs on
the drawing area of the control and the raised coordinates are
in dmm unit. Use OnSurfaceDragDrop event handler to implement
any special processing that should occur as a result of
dropping the mouse over the drawing surface.

Sender is the cad control that raises this event. Source is the
dropped object. X and Y are drop coordinates in dmm unit.

Ex:

procedure TForml.PowerCadlSurfaceDragDrop (Sender, Source:
TObject; X,Y: Integer);
var xLabel: TLabel;
CadControl: TPowercad;

begin
CadControl := Sender as TPowercad;
if Source is TLabel then
begin
xLabel := Source as TLabel;

CadControl.TextOut (CadControl.Activelayer,x,vy,0,50,0.9,
xLabel.Caption,xlabel.Font.name, 0,
False);
end;
end;

Defined in PCDrawBox unit

78

OnSurfaceDragOver

type TDragTraceEvent = procedure (Sender, Source: TObject;
X, Y: Integer;
State:TDragState;
var Accept: Boolean) of object;

Property OnSurfaceDragOver: TDragTraceEvent;

Occurs when the user drags an object over the Powercad Drawing
Surface. This event is a simulation of OnDragOver event. The
difference is that this event occurs on the drawing area of the
control and the raised coordinates are in dmm unit. Use
OnSurfaceDragOver event handler to implement any special
processing that should occur as a result of dragging the mouse
over the drawing surface.

Sender is the cad control that raises this event. Source is the
dropped object. X and Y are drop coordinates in dmm unit.The
state parameter describes how the mouse is moving in relation
to the surface that it is passing over. If the dragged object
can be dropped on the surface set the Accept parameter true
otherwise set to false.

Ex:
procedure TForml.PowerCadlSurfaceDragOver (Sender, Source:

TObject; X,Y: Integer; State:TDragState;
var Accept: Boolean);

begin

Accept := False;

if Source is TLabel then Accept := True;
end;

Defined in PCDrawBox unit

79

OnSurfaceDragEnd

type TDragEndEvent = procedure (Sender, Target: TObject;
X, Y:Integer) of object;

Property OnSurfaceDragkEnd: TDragEndEvent;

Occurs when the dragging of the CadControl ends, either by
dropping the object or by canceling the dragging. This event is
a simulation of OnEndDrag event. The difference is that this
event occurs on the drawing area of the control and the raised
coordinates are in dmm unit. Use OnSurfaceDragEnd event handler
to implement any special processing that should occur when the
dragging stops.

Sender is the cad control that raises this event. Target is the
object where the dragging is ended. X and Y are drop
coordinates in dmm unit.

Ex:

procedure TForml.PowerCadlSurfaceDragEnd (Sender, Target:
TObject; X,Y: Integer);

var CadControl: TPowercad;
begin

CadControl := Sender as TPowercad;

if assigned(Target) then

CadControl.PrintMessage ('PowerCad is dropped on a' +
Target.ClassName) ;

end;

Defined in PCDrawBox unit

80

OnSurfaceDragStart

type TDragStartEvent = procedure (Sender: TObject;
var DragObject : TDragObject) of object;

Property OnSurfaceDragStart: TDragStartEvent;

Occurs when the user begins to drag CadControl Drawing Surface.
This event is a simulation of OnStartDrag event. The difference
is that this event occurs on the drawing area of the control.
Use OnSurfaceDragStart event handler to implement any special
processing that should occur when the dragging starts.

Sender is the cad control that raises this event. DragObject
can be created in event handler to make a more visual dragging.

Ex:
procedure TForml.PowerCadlSurfaceDragStart (Sender:TObject;

var DragObject : TDragObject);
var CadControl: TPowercad;

begin
CadControl := Sender as TPowercad;
DragObject := nil;
CadControl.PrintMessage ('Drag Started');
end;

Defined in PCDrawBox unit

OnSurfacePaint

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnSurfacePaint: TNotifyEvent;

Occurs when the Surface paintbox is repainted. Use
OnSurfacePaint event handler to implement any special drawing
that should occur each time the paintbox is painted.

Sender is the cad control that raises this event.

Ex:

procedure TForml.PowerCadlSurfacePainted (Sender:TObject) ;
var CadControl: TPowercad;

begin
CadControl := Sender as TPowercad;
CadControl.Surface.Canvas.Draw (0,0, Forml.Icon);
end;

Defined in PCDrawing unit

81

OnSelectionChange

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnSelection: TNotifyEvent;

Occurs when the selection changes in the Cad Control . Use
OnSelectionChange event handler to implement any special
drawing that should occur each time the selection is changed.

Sender i1s the cad control that raises this event.
Ex:

procedure TForml.PowerCadlSelectionChange (Sender:TObject) ;
var CadControl: TPowercad;
begin
CadControl := Sender as TPowercad;
CadControl.PrintMesage ('Selected Figures:'+
inttostr (CadControl.Selection.Count));
end;

Defined in PCDrawing unit

OnObjectInserted

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnObjectInserted: TNotifyEvent;

Occurs when any new figure is created/inserted. Use
OnObjectInserted event handler to implement any special drawing
that should occur each time an insertion is made.

Sender is the cad control that raises this event.
Ex:

procedure TForml.PowerCadlObjectInserted (Sender:TObject) ;
var CadControl: TPowercad;
begin
CadControl := Sender as TPowercad;
CadControl.PrintMesage ('Figure Count: '+
inttostr (CadControl.Figures.Count)) ;
end;

Defined in PCDrawing unit

82

OnFigureMoved

type TMoveEvent = procedure (Sender: TFigure;
dx,dy: integer)of Object;
Property OnFigureMoved:TMoveEvent;

Occures when any figure is moved in the drawing surface. If
multiple figures are moved together, this event occurs for each
figure separately. Use OnFigureMoved event handler to implement
any special proceesing that should occur when a figure 1is
moved.

Sender is the figure that is moved. dx and dy is delta
distances of the movement in dmm unit.

Ex:

procedure TForml.PowerCadlFigureMoved (Sender:Tfigure; dx,dy:
integer);
begin
PowerCadl.PrintMesage (Sender.name + ' is moved');
end;

Defined in PCDrawing unit

OnBeforeDelete

type TNotifyEvent = procedure (Sender: TObject) of object;
Property OnBeforeDelete: TNotifyEvent;

Occures before any figure is deleted. If multiple figures are
deleted together, this event occurs for each figure separately.
Use OnBeforeDelete event handler to implement any special
processing that should occur before a figure is deleted.

Sender is the figure that is deleted.

Ex:

procedure TForml.PowerCadlBeforeDelete (Sender:TObject) ;
var Fig: TFigure;

begin

Fig := Sender as Tfigure;

PowerCadl.PrintMesage (Fig.name + ' is deleted');
end;

Defined in PCDrawing unit

83

OnPropertyChanged

type TPropChangeEvent = procedure (Sender:TFigure;
PropName:String; Data:PPropData) of Object;
Property OnPropertyChanged: TPropChangeEvent;

Occures when a figure property is changed from the object
inspector.Use OnPropertyChanged event handler to implement any
special processing that should occure when a figure property is
changed.

Sender is the figure whose property is changed. PropName is the
name of the changed property. Data is the new value of the
property.

Ex:

procedure TForml.PowerCadlPropertyChanged (Sender:TFigure;
PropName:String; Data:PPropData)

begin
PowerCadl.PrintMesage (PropName + ' of '+Sender.name+
' is changed') ;
end;

Defined in PCDrawing unit

84

OnSnapToFigure

type TSnapEvent = Function (Sender: TObject;
SnapFigure: TFigure; var x,y: integer) :Boolean of Object;
Property OnSnapToFigure: TSnapEvent;

Occures when the mouse cursor enters in the snap distance of a
figure. If the SnapToNearPoint property is true then Powercad
fires this event as well as making its own figure snap
calculations.Use OnSnapToFigure event handler to implement your
own figure snapping calculations when the mouse cursor
approaches to your figure.

Sender is the PowerCad Control that fires the event. SnapFigure
is the figure that the cursor will be snapped. x and y are
the current coordinates in dmm unit.

Make your own calculations in the event handler and set the new
value of the x and y. If you change the x and y, means if you
make any snapping, set the return value (the result variable)
true else set the return value false.

Ex:

procedure TForml.PowerCadlSnapToFigure (Sender:TObject;
SnapFigure: TFigure; var x,y: integer);
var myRect:TRectangle;

pl,p2,p3,p4: TPoint;

tp,bp,cp: TPoint;

begin
result := false;
if SnapFigure is TRectangle then
begin
myRect := Trectangle (SnapFigure);
// Calculate rectangle center
pl := myRect.FigurePoints[1l];
p2 := myRect.FigurePoints[2];
p3 := myRect.FigurePoints[3];
p4 := myRect.FigurePoints[4];
tp := Point ((pl.x+p2.x) div 2, (pl.y+p2.y) div 2);
bp := Point ((p3.x+pd.x) div 2, (p3.y+pd.y) div 2);
cp := Point((tp.x+bp.x) div 2, (tp.ytbp.y) div 2);
if (abs(cp.x-x) < 50) and (abs(cp.y-y) < 50) then
begin
X = Cp.X;
y = Cp.y;
Result := True;
end;
end;
end;

Defined in PCDrawing unit

85

